Li ZT, Cao K, Li JS, Tang Y, Ding XR et al. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opto-Electron Adv 4, 200019 (2021).. doi: 10.29026/oea.2021.200019
Citation: Li ZT, Cao K, Li JS, Tang Y, Ding XR et al. Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure. Opto-Electron Adv 4, 200019 (2021).. doi: 10.29026/oea.2021.200019

Review Open Access

Review of blue perovskite light emitting diodes with optimization strategies for perovskite film and device structure

More Information
  • Perovskite light emitting diodes (PeLEDs) have attracted considerable research attention because of their external quantum efficiency (EQE) of >20% and have potential scope for further improvement. However, compared to red and green PeLEDs, blue PeLEDs have not been extensively investigated, which limits their commercial applications in the fields of luminance and full-color displays. In this review, blue-PeLED-related research is categorized by the composition of perovskite. The main challenges and corresponding optimization strategies for perovskite films are summarized. Next, the novel strategies for the design of device structures of blue PeLEDs are reviewed from the perspective of transport layers and interfacial layers. Accordingly, future directions for blue PeLEDs are discussed. This review can be a guideline for optimizing perovskite film and device structure of blue PeLEDs, thereby enhancing their development and application scope.
  • 加载中
  • [1] Wehrenfennig C, Eperon GE, Johnston MB, Snaith HJ, Herz LM. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv Mater 26, 1584–1589 (2014). doi: 10.1002/adma.201305172

    CrossRef Google Scholar

    [2] Stranks SD, Eperon GE, Grancini G, Menelaou C, Alcocer MJP et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342, 341–344 (2013). doi: 10.1126/science.1243982

    CrossRef Google Scholar

    [3] Xiao ZG, Dong QF, Bi C, Shao YC, Yuan YB et al. Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv Mater 26, 6503–6509 (2014). doi: 10.1002/adma.201401685

    CrossRef Google Scholar

    [4] Peng SM, Wang SS, Zhao DD, Li XJ, Liang C et al. Pure bromide-based perovskite nanoplatelets for blue light-emitting diodes. Small Methods 3, 1900196 (2019). doi: 10.1002/smtd.201900196

    CrossRef Google Scholar

    [5] Luo DY, Su R, Zhang W, Gong QH, Zhu R. Minimizing non-radiative recombination losses in perovskite solar cells. Nat Rev Mater 5, 44–60 (2020). doi: 10.1038/s41578-019-0151-y

    CrossRef Google Scholar

    [6] Tian W, Zhou HP, Li L. Hybrid organic-inorganic perovskite photodetectors. Small 13, 1702107 (2017). doi: 10.1002/smll.201702107

    CrossRef Google Scholar

    [7] Veldhuis SA, Boix PP, Yantara N, Li MJ, Sum TC et al. Perovskite materials for light-emitting diodes and lasers. Adv Mater 28, 6804–6834 (2016). doi: 10.1002/adma.201600669

    CrossRef Google Scholar

    [8] Sahli F, Werner J, Kamino BA, Bräuninger M, Monnard R et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nat Mater 17, 820–826 (2018). doi: 10.1038/s41563-018-0115-4

    CrossRef Google Scholar

    [9] Kong CY, Lin CH, Lin CH, Li TY, Chen SWH et al. Highly efficient and stable white light-emitting diodes using perovskite quantum dot paper. Adv Sci 6, 1970143 (2019). doi: 10.1002/advs.201970143

    CrossRef Google Scholar

    [10] Li ZT, Song CJ, Li JS, Liang GW, Rao LS et al. Highly efficient and water-stable lead halide perovskite quantum dots using superhydrophobic aerogel inorganic matrix for white light-emitting diodes. Adv Mater Technol 5, 1900941 (2020). doi: 10.1002/admt.201900941

    CrossRef Google Scholar

    [11] Chen P, Xiong ZY, Wu XY, Shao M, Meng Y et al. Nearly 100% efficiency enhancement of CH3NH3PbBr3 perovskite light-emitting diodes by utilizing plasmonic au nanoparticles. J Phys Chem Lett 8, 3961–3969 (2017). doi: 10.1021/acs.jpclett.7b01562

    CrossRef Google Scholar

    [12] Li ZT, Cao K, Li JS, Du XW, Tang Y et al. Modification of interface between PEDOT:PSS and perovskite film inserting an ultrathin LiF layer for enhancing efficiency of perovskite light-emitting diodes. Org Electron 81, 105675 (2020). doi: 10.1016/j.orgel.2020.105675

    CrossRef Google Scholar

    [13] Lu M, Zhang Y, Wang SX, Guo J, Yu WW et al. Metal halide perovskite light-emitting devices: promising technology for next-generation displays. Adv Funct Mater 29, 1902008 (2019). doi: 10.1002/adfm.201902008

    CrossRef Google Scholar

    [14] Tan ZK, Moghaddam RS, Lai ML, Docampo P, Higler R et al. Bright light-emitting diodes based on organometal halide perovskite. Nat Nanotechnol 9, 687–692 (2014). doi: 10.1038/nnano.2014.149

    CrossRef Google Scholar

    [15] Li GR, Tan ZK, Di DW, Lai ML, Jiang L et al. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett 15, 2640–2644 (2015). doi: 10.1021/acs.nanolett.5b00235

    CrossRef Google Scholar

    [16] Li JQ, Bade SGR, Shan X, Yu ZB. Single-layer light-emitting diodes using organometal halide perovskite/poly(ethylene oxide) composite thin films. Adv Mater 27, 5196–5202 (2015). doi: 10.1002/adma.201502490

    CrossRef Google Scholar

    [17] Yuan MJ, Quan LN, Comin R, Walters G, Sabatini R et al. Perovskite energy funnels for efficient light-emitting diodes. Nat Nanotechnol 11, 872–877 (2016). doi: 10.1038/nnano.2016.110

    CrossRef Google Scholar

    [18] Zhang CX, Kuang DB, Wu WQ. A review of diverse halide perovskite morphologies for efficient optoelectronic applications. Small Methods 4, 1900662 (2020). doi: 10.1002/smtd.201900662

    CrossRef Google Scholar

    [19] Wang JP, Wang NN, Jin YZ, Si JJ, Tan ZK et al. Interfacial control toward efficient and low-voltage perovskite light-emitting diodes. Adv Mater 27, 2311–2316 (2015). doi: 10.1002/adma.201405217

    CrossRef Google Scholar

    [20] Shi YF, Wu W, Dong H, Li GR, Xi K et al. A strategy for architecture design of crystalline perovskite light-emitting diodes with high performance. Adv Mater 30, e1800251 (2018). doi: 10.1002/adma.201800251

    CrossRef Google Scholar

    [21] Cho H, Jeong SH, Park MH, Kim YH, Wolf C et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015). doi: 10.1126/science.aad1818

    CrossRef Google Scholar

    [22] Lin KB, Xing J, Quan LN, de Arquer FPG, Gong XW et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018). doi: 10.1038/s41586-018-0575-3

    CrossRef Google Scholar

    [23] Cao Y, Wang NN, Tian H, Guo JS, Wei YQ et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018). doi: 10.1038/s41586-018-0576-2

    CrossRef Google Scholar

    [24] Xu WD, Hu Q, Bai S, Bao CX, Miao YF et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat Photonics 13, 418–424 (2019).

    Google Scholar

    [25] Li ZT, Song CJ, Qiu ZY, Li JS, Cao K et al. Study on the thermal and optical performance of quantum dot white light-emitting diodes using metal-based inverted packaging structure. IEEE Trans Electron Devices 66, 3020–3027 (2019). doi: 10.1109/TED.2019.2917010

    CrossRef Google Scholar

    [26] Li CHA, Zhou ZC, Vashishtha P, Halpert JE. The future is blue (LEDs): why chemistry is the key to perovskite displays. Chem Mater 31, 6003–6032 (2019). doi: 10.1021/acs.chemmater.9b01650

    CrossRef Google Scholar

    [27] Zhou XJ, Tian PF, Sher CW, Wu J, Liu HZ et al. Growth, transfer printing and colour conversion techniques towards full-colour micro-LED display. Prog Quantum Electron 71, 100263 (2020). doi: 10.1016/j.pquantelec.2020.100263

    CrossRef Google Scholar

    [28] Liu ZJ, Lin CH, Hyun BR, Sher CW, Lv ZJ et al. Micro-light-emitting diodes with quantum dots in display technology. Light Sci Appl 9, 83 (2020). doi: 10.1038/s41377-020-0268-1

    CrossRef Google Scholar

    [29] Li JS, Tang Y, Li ZT, Ding XR, Yu BH et al. Largely enhancing luminous efficacy, color-conversion efficiency, and stability for quantum-dot white LEDs using the two-dimensional hexagonal pore structure of sba-15 mesoporous particles. ACS Appl Mater Interfaces 11, 18808–18816 (2019). doi: 10.1021/acsami.8b22298

    CrossRef Google Scholar

    [30] Chen SWH, Huang YM, Singh KJ, Hsu YC, Liou FJ et al. Full-color micro-LED display with high color stability using semipolar (20–21) InGaN LEDs and quantum-dot photoresist. Photonics Res 8, 630–636 (2020). doi: 10.1364/PRJ.388958

    CrossRef Google Scholar

    [31] Li ZT, Cao K, Li JS, Tang Y, Xu L et al. Investigation of light-extraction mechanisms of multiscale patterned arrays with rough morphology for gan-based thin-film LEDs. IEEE Access 7, 73890–73898 (2019). doi: 10.1109/ACCESS.2019.2921058

    CrossRef Google Scholar

    [32] Fang T, Zhang FJ, Yuan SC, Zeng HB, Song JZ. Recent advances and prospects toward blue perovskite materials and light-emitting diodes. InfoMat 1, 211–233 (2019). doi: 10.1002/inf2.12019

    CrossRef Google Scholar

    [33] Protesescu L, Yakunin S, Bodnarchuk MI, Krieg F, Caputo R et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett 15, 3692–3696 (2015). doi: 10.1021/nl5048779

    CrossRef Google Scholar

    [34] Schulz P, Edri E, Kirmayer S, Hodes G, Cahen D et al. Interface energetics in organo-metal halide perovskite-based photovoltaic cells. Energy Environ Sci 7, 1377–1381 (2014). doi: 10.1039/c4ee00168k

    CrossRef Google Scholar

    [35] Kumawat NK, Dey A, Kumar A, Gopinathan SP, Narasimhan KL et al. Band gap tuning of CH3NH3Pb(Br1-xClx)3 hybrid perovskite for blue electroluminescence. ACS Appl Mater Interfaces 7, 13119–13124 (2015). doi: 10.1021/acsami.5b02159

    CrossRef Google Scholar

    [36] Sadhanala A, Ahmad S, Zhao BD, Giesbrecht N, Pearce PM et al. Blue-green color tunable solution processable organolead chloride-bromide mixed halide perovskites for optoelectronic applications. Nano Lett 15, 6095–6101 (2015). doi: 10.1021/acs.nanolett.5b02369

    CrossRef Google Scholar

    [37] Wang ZB, Cheng T, Wang FZ, Dai SY, Tan ZA. Morphology engineering for high-performance and multicolored perovskite light-emitting diodes with simple device structures. Small 12, 4412–4420 (2016). doi: 10.1002/smll.201601785

    CrossRef Google Scholar

    [38] Kim HP, Kim J, Kim BS, Kim HM, Kim J et al. High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Adv Opt Mater 5, 1600920 (2017). doi: 10.1002/adom.201600920

    CrossRef Google Scholar

    [39] Wang HL, Zhao XF, Zhang BH, Xie ZY. Blue perovskite light-emitting diodes based on RbX-doped polycrystalline CsPbBr3 perovskite films. J Mater Chem C 7, 5596–5603 (2019). doi: 10.1039/C9TC01205B

    CrossRef Google Scholar

    [40] Yuan F, Ran CX, Zhang L, Dong H, Jiao B et al. A cocktail of multiple cations in inorganic halide perovskite toward efficient and highly stable blue light-emitting diodes. ACS Energy Lett 5, 1062–1069 (2020). doi: 10.1021/acsenergylett.9b02562

    CrossRef Google Scholar

    [41] Gangishetty MK, Sanders SN, Congreve DN. Mn2+ doping enhances the brightness, efficiency, and stability of bulk perovskite light-emitting diodes. ACS Photonics 6, 1111–1117 (2019). doi: 10.1021/acsphotonics.9b00142

    CrossRef Google Scholar

    [42] Du PP, Li JH, Wang L, Liu J, Li SR et al. Vacuum-deposited blue inorganic perovskite light-emitting diodes. ACS Appl Mater Interfaces 11, 47083–47090 (2019). doi: 10.1021/acsami.9b17164

    CrossRef Google Scholar

    [43] Song JZ, Li JH, Li XM, Xu LM, Dong YH et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv Mater 27, 7162–7167 (2015). doi: 10.1002/adma.201502567

    CrossRef Google Scholar

    [44] Pan J, Quan LN, Zhao YB, Peng W, Murali B et al. Highly efficient perovskite-quantum-dot light-emitting diodes by surface engineering. Adv Mater 28, 8718–8725 (2016). doi: 10.1002/adma.201600784

    CrossRef Google Scholar

    [45] Yang F, Chen HT, Zhang R, Liu XK, Zhang WZ et al. Efficient and spectrally stable blue perovskite light-emitting diodes based on potassium passivated nanocrystals. Adv Funct Mater 30, 1908760 (2020). doi: 10.1002/adfm.201908760

    CrossRef Google Scholar

    [46] Yao JS, Wang L, Wang KH, Yin YC, Yang JN et al. Calcium-tributylphosphine oxide passivation enables the efficiency of pure-blue perovskite light-emitting diode up to 3.3%. Sci Bull 65, 1150–1153 (2020). doi: 10.1016/j.scib.2020.03.036

    CrossRef Google Scholar

    [47] Dong YT, Wang YK, Yuan FL, Johnston A, Liu Y et al. Bipolar-shell resurfacing for blue LEDs based on strongly confined perovskite quantum dots. Nat Nanotechnol 15, 668–674 (2020). doi: 10.1038/s41565-020-0714-5

    CrossRef Google Scholar

    [48] Li GR, Rivarola FWR, Davis NJLK, Bai S, Jellicoe TC et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv Mater 28, 3528–3534 (2016). doi: 10.1002/adma.201600064

    CrossRef Google Scholar

    [49] Ochsenbein ST, Krieg F, Shynkarenko Y, Raino G, Kovalenko MV. Engineering color-stable blue light-emitting diodes with lead halide perovskite nanocrystals. ACS Appl Mater Interfaces 11, 21655–21660 (2019). doi: 10.1021/acsami.9b02472

    CrossRef Google Scholar

    [50] Deng W, Xu XZ, Zhang XJ, Zhang YD, Jin XC et al. Organometal halide perovskite quantum dot light-emitting diodes. Adv Funct Mater 26, 4797–4802 (2016). doi: 10.1002/adfm.201601054

    CrossRef Google Scholar

    [51] Yao EP, Yang ZL, Meng L, Sun PY, Dong SQ et al. High-brightness blue and white LEDs based on inorganic perovskite nanocrystals and their composites. Adv Mater 29, 1606859 (2017). doi: 10.1002/adma.201606859

    CrossRef Google Scholar

    [52] Li XM, Zhang K, Li JH, Chen J, Wu Y et al. Heterogeneous nucleation toward polar-solvent-free, fast, and one-pot synthesis of highly uniform perovskite quantum dots for wider color gamut display. Adv Mater Interfaces 5, 1800010 (2018). doi: 10.1002/admi.201800010

    CrossRef Google Scholar

    [53] Shin YS, Yoon YJ, Lee KT, Jeong J, Park SY et al. Vivid and fully saturated blue light-emitting diodes based on ligand-modified halide perovskite nanocrystals. ACS Appl Mater Interfaces 11, 23401–23409 (2019). doi: 10.1021/acsami.9b04329

    CrossRef Google Scholar

    [54] Shynkarenko Y, Bodnarchuk MI, Bernasconi C, Berezovska Y, Verteletskyi V et al. Direct synthesis of quaternary alkylammonium-capped perovskite nanocrystals for efficient blue and green light-emitting diodes. ACS Energy Lett 4, 2703–2711 (2019). doi: 10.1021/acsenergylett.9b01915

    CrossRef Google Scholar

    [55] Ye FH, Zhang HJ, Wang P, Cai JL, Wang L et al. Spectral tuning of efficient CsPbBrxCl3-x blue light-emitting diodes via halogen exchange triggered by benzenesulfonates. Chem Mater 32, 3211–3218 (2020). doi: 10.1021/acs.chemmater.0c00312

    CrossRef Google Scholar

    [56] Todorovic P, Ma DX, Chen B, Quintero-Bermudez R, Saidaminov MI et al. Spectrally tunable and stable electroluminescence enabled by rubidium doping of CsPbBr3 nanocrystals. Adv Opt Mater 7, 1901440 (2019). doi: 10.1002/adom.201901440

    CrossRef Google Scholar

    [57] Liu M, Zhong GH, Yin YM, Miao JS, Li K et al. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv Sci 4, 1700335 (2017). doi: 10.1002/advs.201700335

    CrossRef Google Scholar

    [58] Yong ZJ, Guo SQ, Ma JP, Zhang JY, Li ZY et al. Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield. J Am Chem Soc 140, 9942–9951 (2018). doi: 10.1021/jacs.8b04763

    CrossRef Google Scholar

    [59] Ahmed GH, El-Demellawi JK, Yin J, Pan J, Velusamy DB et al. Giant photoluminescence enhancement in CsPbCl3 perovskite nanocrystals by simultaneous dual-surface passivation. ACS Energy Lett 3, 2301–2307 (2018). doi: 10.1021/acsenergylett.8b01441

    CrossRef Google Scholar

    [60] Mondal N, De A, Samanta A. Achieving near-unity photoluminescence efficiency for blue-violet-emitting perovskite nanocrystals. ACS Energy Lett 4, 32–39 (2019). doi: 10.1021/acsenergylett.8b01909

    CrossRef Google Scholar

    [61] Zhai Y, Bai X, Pan GC, Zhu JY, Shao H et al. Effective blue-violet photoluminescence through lanthanum and fluorine ions Co-doping for CsPbCl3 perovskite quantum dots. Nanoscale 11, 2484–2491 (2019). doi: 10.1039/C8NR09794A

    CrossRef Google Scholar

    [62] Chen JK, Ma JP, Guo SQ, Chen YM, Zhao Q et al. High-efficiency violet-emitting all-inorganic perovskite nanocrystals enabled by alkaline-earth metal passivation. Chem Mater 31, 3974–3983 (2019). doi: 10.1021/acs.chemmater.9b00442

    CrossRef Google Scholar

    [63] Meng FY, Liu XY, Cai XY, Gong ZF, Li BB et al. Incorporation of rubidium cations into blue perovskite quantum dot light-emitting diodes via FaBr-modified multi-cation hot-injection method. Nanoscale 11, 1295–1303 (2019). doi: 10.1039/C8NR07907B

    CrossRef Google Scholar

    [64] Hou SC, Gangishetty MK, Quan QM, Congreve DN. Efficient blue and white perovskite light-emitting diodes via manganese doping. Joule 2, 2421–2433 (2018). doi: 10.1016/j.joule.2018.08.005

    CrossRef Google Scholar

    [65] Pan GC, Bai X, Xu W, Chen X, Zhai Y et al. Bright blue light emission of Ni2+ ion-doped CsPbClxBr3-x perovskite quantum dots enabling efficient light-emitting devices. ACS Appl Mater Interfaces 12, 14195–14202 (2020). doi: 10.1021/acsami.0c01074

    CrossRef Google Scholar

    [66] Shi SS, Wang Y, Zeng SY, Cui Y, Xiao Y. Surface regulation of CsPbBr3 quantum dots for standard blue-emission with boosted plqy. Adv Opt Mater 8, 2000167 (2020). doi: 10.1002/adom.202000167

    CrossRef Google Scholar

    [67] Shao H, Zhai Y, Wu XF, Xu W, Xu L et al. High brightness blue light-emitting diodes based on CsPb(Cl/Br)3 perovskite qds with phenethylammonium chloride passivation. Nanoscale 12, 11728–11734 (2020). doi: 10.1039/D0NR02597F

    CrossRef Google Scholar

    [68] Zheng XP, Yuan S, Liu JK, Yin J, Yuan FL et al. Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient rec. 2020 blue light-emitting diodes. ACS Energy Lett 5, 793–798 (2020). doi: 10.1021/acsenergylett.0c00057

    CrossRef Google Scholar

    [69] Chiba T, Ishikawa S, Sato J, Takahashi Y, Ebe H et al. Blue perovskite nanocrystal light-emitting devices via the ligand exchange with adamantane diamine. Adv Opt Mater 8, 2000289 (2020). doi: 10.1002/adom.202000289

    CrossRef Google Scholar

    [70] Wang LT, Shi ZF, Ma ZZ, Yang DW, Zhang F et al. Colloidal synthesis of ternary copper halide nanocrystals for high-efficiency deep-blue light-emitting diodes with a half-lifetime above 100 h. Nano Lett 20, 3568–3576 (2020). doi: 10.1021/acs.nanolett.0c00513

    CrossRef Google Scholar

    [71] Levchuk I, Osvet A, Tang XF, Brandl M, Perea JD et al. Brightly luminescent and color-tunable formamidinium lead halide perovskite FAPbX3 (X = Cl, Br, I) colloidal nanocrystals. Nano Lett 17, 2765–2770 (2017). doi: 10.1021/acs.nanolett.6b04781

    CrossRef Google Scholar

    [72] Bekenstein Y, Koscher BA, Eaton SW, Yang PD, Alivisatos AP. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J Am Chem Soc 137, 16008–16011 (2015). doi: 10.1021/jacs.5b11199

    CrossRef Google Scholar

    [73] Akkerman QA, Motti SG, Kandada ARS, Mosconi E, D’Innocenzo V et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J Am Chem Soc 138, 1010–1016 (2016). doi: 10.1021/jacs.5b12124

    CrossRef Google Scholar

    [74] Kumar S, Jagielski J, Yakunin S, Rice P, Chiu YC et al. Efficient blue electroluminescence using quantum-confined two-dimensional perovskites. ACS Nano 10, 9720–9729 (2016). doi: 10.1021/acsnano.6b05775

    CrossRef Google Scholar

    [75] Zhang CY, Wan Q, Wang B, Zheng WL, Liu MM et al. Surface ligand engineering toward brightly luminescent and stable cesium lead halide perovskite nanoplatelets for efficient blue-light-emitting diodes. J Phys Chem C 123, 26161–26169 (2019). doi: 10.1021/acs.jpcc.9b09034

    CrossRef Google Scholar

    [76] Bohn BJ, Tong Y, Gramlich M, Lai ML, Döblinger M et al. Boosting tunable blue luminescence of halide perovskite nanoplatelets through postsynthetic surface trap repair. Nano Lett 18, 5231–5238 (2018). doi: 10.1021/acs.nanolett.8b02190

    CrossRef Google Scholar

    [77] Yang D, Zou YT, Li PL, Liu QP, Wu LZ et al. Large-scale synthesis of ultrathin cesium lead bromide perovskite nanoplates with precisely tunable dimensions and their application in blue light-emitting diodes. Nano Energy 47, 235–242 (2018). doi: 10.1016/j.nanoen.2018.03.019

    CrossRef Google Scholar

    [78] Wu Y, Wei CT, Li XM, Li YL, Qiu SC et al. In situ passivation of PbBr64- octahedra toward blue luminescent CsPbBr3 nanoplatelets with near 100% absolute quantum yield. ACS Energy Lett 3, 2030–2037 (2018). doi: 10.1021/acsenergylett.8b01025

    CrossRef Google Scholar

    [79] Peng SM, Wen ZL, Ye TK, Xiao XT, Wang KY et al. Effective surface ligand-concentration tuning of deep-blue luminescent FAPbBr3 nanoplatelets with enhanced stability and charge transport. ACS Appl Mater Interfaces 12, 31863–31874 (2020). doi: 10.1021/acsami.0c08552

    CrossRef Google Scholar

    [80] Hu HW, Salim T, Chen BB, Lam YM. Molecularly engineered organic-inorganic hybrid perovskite with multiple quantum well structure for multicolored light-emitting diodes. Sci Rep 6, 33546 (2016). doi: 10.1038/srep33546

    CrossRef Google Scholar

    [81] Congreve DN, Weidman MC, Seitz M, Paritmongkol W, Dahod NS et al. Tunable light-emitting diodes utilizing quantum-confined layered perovskite emitters. ACS Photonics 4, 476–481 (2017). doi: 10.1021/acsphotonics.6b00963

    CrossRef Google Scholar

    [82] Cheng L, Cao Y, Ge R, Wei YQ, Wang NN et al. Sky-blue perovskite light-emitting diodes based on quasi-two-dimensional layered perovskites. Chin Chem Lett 28, 29–31 (2017). doi: 10.1016/j.cclet.2016.07.001

    CrossRef Google Scholar

    [83] Chen ZM, Zhang CY, Jiang XF, Liu MY, Xia RX et al. High-performance color-tunable perovskite light emitting devices through structural modulation from bulk to layered film. Adv Mater 29, 1603157 (2017). doi: 10.1002/adma.201603157

    CrossRef Google Scholar

    [84] Wang Q, Ren J, Peng XF, Ji XX, Yang XH. Efficient sky-blue perovskite light-emitting devices based on ethylammonium bromide induced layered perovskites. ACS Appl Mater Interfaces 9, 29901–29906 (2017). doi: 10.1021/acsami.7b07458

    CrossRef Google Scholar

    [85] Vashishtha P, Ng M, Shivarudraiah SB, Halpert JE. High efficiency blue and green light-emitting diodes using ruddlesden-popper inorganic mixed halide perovskites with butylammonium interlayers. Chem Mater 31, 83–89 (2019). doi: 10.1021/acs.chemmater.8b02999

    CrossRef Google Scholar

    [86] Wang KH, Peng YD, Ge J, Jiang SL, Zhu BS et al. Efficient and color-tunable quasi-2D CsPbBrxC3-x perovskite blue light-emitting diodes. ACS Photonics 6, 667–676 (2019). doi: 10.1021/acsphotonics.8b01490

    CrossRef Google Scholar

    [87] Li ZC, Chen ZM, Yang YC, Xue QF, Yip HL et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat Commun 10, 1027 (2019). doi: 10.1038/s41467-019-09011-5

    CrossRef Google Scholar

    [88] Zhang FJ, Cai B, Song JZ, Han BN, Zhang BS et al. Efficient blue perovskite light-emitting diodes boosted by 2D/3D energy cascade channels. Adv Funct Mater 30, 2001732 (2020). doi: 10.1002/adfm.202001732

    CrossRef Google Scholar

    [89] Jiang YZ, Qin CC, Cui MH, He TW, Liu KK et al. Spectra stable blue perovskite light-emitting diodes. Nat Commun 10, 1868 (2019). doi: 10.1038/s41467-019-09794-7

    CrossRef Google Scholar

    [90] Liu Y, Cui JY, Du K, Tian H, He ZF et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat Photonics 13, 760–764 (2019). doi: 10.1038/s41566-019-0505-4

    CrossRef Google Scholar

    [91] Xing J, Zhao YB, Askerka M, Quan LN, Gong XW et al. Color-stable highly luminescent sky-blue perovskite light-emitting diodes. Nat Commun 9, 3541 (2018). doi: 10.1038/s41467-018-05909-8

    CrossRef Google Scholar

    [92] Yuan S, Wang ZK, Xiao LX, Zhang CF, Yang SY et al. Optimization of low-dimensional components of quasi-2D perovskite films for deep-blue light-emitting diodes. Adv Mater 31, 1904319 (2019). doi: 10.1002/adma.201904319

    CrossRef Google Scholar

    [93] He LH, Xiao ZW, Yang XL, Wu YT, Lian YJ et al. Green and sky blue perovskite light-emitting devices with a diamine additive. J Mater Sci 55, 7691–7701 (2020). doi: 10.1007/s10853-020-04553-2

    CrossRef Google Scholar

    [94] Liang D, Peng YL, Fu YP, Shearer MJ, Zhang JJ et al. Color-pure violet-light-emitting diodes based on layered lead halide perovskite nanoplates. ACS Nano 10, 6897–6904 (2016). doi: 10.1021/acsnano.6b02683

    CrossRef Google Scholar

    [95] Deng W, Jin XC, Lv Y, Zhang XJ, Zhang XH et al. 2D Ruddlesden-popper perovskite nanoplate based deep-blue light-emitting diodes for light communication. Adv Funct Mater 29, 1903861 (2019). doi: 10.1002/adfm.201903861

    CrossRef Google Scholar

    [96] Chen H, Lin J, Kang J, Kong Q, Lu D et al. Structural and spectral dynamics of single-crystalline ruddlesden-popper phase halide perovskite blue light-emitting diodes. Sci Adv 6, eaay4045 (2020). doi: 10.1126/sciadv.aay4045

    CrossRef Google Scholar

    [97] Tan ZF, Luo JJ, Yang LB, Li X, Deng ZY et al. Spectrally stable ultra-pure blue perovskite light-emitting diodes boosted by square-wave alternating voltage. Adv Opt Mater 8, 1901094 (2020). doi: 10.1002/adom.201901094

    CrossRef Google Scholar

    [98] Wang Q, Wang XM, Yang Z, Zhou NH, Deng YH et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat Commun 10, 5633 (2019). doi: 10.1038/s41467-019-13580-w

    CrossRef Google Scholar

    [99] Ma DX, Todorović P, Meshkat S, Saidaminov MI, Wang YK et al. Chloride insertion-immobilization enables bright, narrowband, and stable blue-emitting perovskite diodes. J Am Chem Soc 142, 5126–5134 (2020). doi: 10.1021/jacs.9b12323

    CrossRef Google Scholar

    [100] Wang FZ, Wang ZY, Sun WD, Wang ZB, Bai YM et al. High performance quasi-2D perovskite sky-blue light-emitting diodes using a dual-ligand strategy. Small 16, e2002940 (2020). doi: 10.1002/smll.202002940

    CrossRef Google Scholar

    [101] Leung TL, Tam HW, Liu FZ, Lin JY, Ng AMC et al. Mixed spacer cation stabilization of blue-emitting n=2 ruddlesden-popper organic-inorganic halide perovskite films. Adv Opt Mater 8, 1901679 (2020). doi: 10.1002/adom.201901679

    CrossRef Google Scholar

    [102] Zeng SY, Shi SS, Wang SR, Xiao Y. Mixed-ligand engineering of quasi-2D perovskites for efficient sky-blue light-emitting diodes. J Mater Chem C 8, 1319–1325 (2020). doi: 10.1039/C9TC05590H

    CrossRef Google Scholar

    [103] Jin Y, Wang ZK, Yuan S, Wang Q, Qin CC et al. Synergistic effect of dual ligands on stable blue quasi-2D perovskite light-emitting diodes. Adv Funct Mater 30, 1908339 (2020). doi: 10.1002/adfm.201908339

    CrossRef Google Scholar

    [104] Zou YT, Xu H, Li SY, Song T, Kuai L et al. Spectral-stable blue emission from moisture-treated low-dimensional lead bromide-based perovskite films. ACS Photonics 6, 1728–1735 (2019). doi: 10.1021/acsphotonics.9b00435

    CrossRef Google Scholar

    [105] Yusoff ARBM, Gavim AEX, Macedo AG, da Silva WJ, Schneider FK et al. High-efficiency, solution-processable, multilayer triple cation perovskite light-emitting diodes with copper sulfide-gallium-tin oxide hole transport layer and aluminum-zinc oxide-doped cesium electron injection layer. Mater Today Chem 10, 104–111 (2018). doi: 10.1016/j.mtchem.2018.08.005

    CrossRef Google Scholar

    [106] Hoye RLZ, Lai ML, Anaya M, Tong Y, Galkowski K et al. Identifying and reducing interfacial losses to enhance color-pure electroluminescence in blue-emitting perovskite nanoplatelet light-emitting diodes. ACS Energy Lett 4, 1181–1188 (2019). doi: 10.1021/acsenergylett.9b00571

    CrossRef Google Scholar

    [107] Gangishetty MK, Hou SC, Quan QM, Congreve DN. Reducing architecture limitations for efficient blue perovskite light-emitting diodes. Adv Mater 30, e1706226 (2018). doi: 10.1002/adma.201706226

    CrossRef Google Scholar

    [108] Ren ZW, Xiao XT, Ma RM, Lin H, Wang K et al. Hole transport bilayer structure for quasi-2D perovskite based blue light-emitting diodes with high brightness and good spectral stability. Adv Funct Mater 29, 1905339 (2019). doi: 10.1002/adfm.201905339

    CrossRef Google Scholar

    [109] Shin YS, Yoon YJ, Heo J, Song S, Kim JW et al. Functionalized PFN-X (X = Cl, Br, or I) for balanced charge carriers of highly efficient blue light-emitting diodes. ACS Appl Mater Interfaces 12, 35740–35747 (2020). doi: 10.1021/acsami.0c09968

    CrossRef Google Scholar

    [110] Wang HL, Xu YS, Wu J, Chen L, Yang QQ et al. Bright and color-stable blue-light-emitting diodes based on three-dimensional perovskite polycrystalline films via morphology and interface engineering. J Phys Chem Lett 11, 1411–1418 (2020). doi: 10.1021/acs.jpclett.9b03714

    CrossRef Google Scholar

    [111] Yuan ZC, Miao YF, Hu ZJ, Xu WD, Kuang CY et al. Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nat Commun 10, 2818 (2019). doi: 10.1038/s41467-019-10612-3

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(9)

Tables(1)

Article Metrics

Article views(15950) PDF downloads(1745) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint