Sharbirin AS, Akhtar S, Kim JY. Light-emitting MXene quantum dots. Opto-Electron Adv 4, 200077 (2021).. doi: 10.29026/oea.2021.200077
Citation: Sharbirin AS, Akhtar S, Kim JY. Light-emitting MXene quantum dots. Opto-Electron Adv 4, 200077 (2021).. doi: 10.29026/oea.2021.200077

Review Open Access

Light-emitting MXene quantum dots

More Information
  • These authors contributed equally to this work

  • Corresponding author: JY Kim, Email: j.kim@skku.edu
  • MXene (Mn+1Xn) is an emerging class of layered two-dimensional (2D) materials, which are derived from their bulk-state MAX phase (Mn+1AXn, where M: early transition metal, A: group element 13 and 14, and X: carbon and/or nitrogen). MXenes have found wide-ranging applications in energy storage devices, sensors, catalysis, etc. owing to their high electronic conductivity and wide range of optical absorption. However, the absence of semiconducting MXenes has limited their applications related to light emission. Research has shown that quantum dots (QDs) derived from MXene (MQDs) not only retain the properties of the parent MXene but also demonstrate significant improvement on light emission and quantum yield (QY). The optical properties and photoluminescence (PL) emission mechanisms of these light-emitting MQDs have not been comprehensively investigated. Recently, work on light-emitting MQDs has shown good progress, and MQDs exhibiting multi-color PL emission along with high QY have been fabricated. The synthesis methods also play a vital role in determining the light emission properties of these MQDs. This review provides an overview of light-emitting MQDs and their synthesis methods, optical properties, and applications in various optical, sensory, and imaging devices. The future prospects of light-emitting MQDs are also discussed to provide an insight that helps to further advance the progress on MQDs.
  • 加载中
  • [1] Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004). doi: 10.1126/science.1102896

    CrossRef Google Scholar

    [2] Geim AK, Novoselov KS. The rise of graphene. Nat Mater 6, 183–191 (2007). doi: 10.1038/nmat1849

    CrossRef Google Scholar

    [3] Benka SG. Two-dimensional atomic crystals. Phys Today 58, 9 (2005).

    Google Scholar

    [4] Mak KF, Lee C, Hone J, Shan J, Heinz TF. Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105, 136805 (2010). doi: 10.1103/PhysRevLett.105.136805

    CrossRef Google Scholar

    [5] Ma RZ, Sasaki T. Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites. Adv Mater 22, 5082–5104 (2010). doi: 10.1002/adma.201001722

    CrossRef Google Scholar

    [6] Lv QS, Yan FG, Wei X, Wang KY. High-performance, self-driven photodetector based on graphene sandwiched GaSe/WS2 heterojunction. Adv Opt Mater 6, 1700490 (2018). doi: 10.1002/adom.201700490

    CrossRef Google Scholar

    [7] Lv QS, Yan FG, Mori N, Zhu WK, He C et al. Interlayer band-to-band tunneling and negative differential resistance in van der Waals BP/InSe field-effect transistors. Adv Funct Mater 30, 1910713 (2020). doi: 10.1002/adfm.201910713

    CrossRef Google Scholar

    [8] Hu C, Zhang D, Yan FG, Li YC, Lv QS et al. From two- to multi-state vertical spin valves without spacer layer based on Fe3GeTe2 van der Waals homo-junctions. Sci Bull 65, 1072–1077 (2020). doi: 10.1016/j.scib.2020.03.035

    CrossRef Google Scholar

    [9] Naguib M, Kurtoglu M, Presser V, Lu J, Niu JJ et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater 23, 4248–4253 (2011). doi: 10.1002/adma.201102306

    CrossRef Google Scholar

    [10] Hantanasirisakul K, Gogotsi Y. Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes). Adv Mater 30, 1804779 (2018). doi: 10.1002/adma.201804779

    CrossRef Google Scholar

    [11] Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv Mater 26, 992–1005 (2014). doi: 10.1002/adma.201304138

    CrossRef Google Scholar

    [12] Urbankowski P, Anasori B, Makaryan T, Er DQ, Kota S et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale 8, 11385–11391 (2016). doi: 10.1039/C6NR02253G

    CrossRef Google Scholar

    [13] Zhang T, Pan LM, Tang H, Du F, Guo YH et al. Synthesis of two-dimensional Ti3C2Tx MXene using HCl+LiF etchant: enhanced exfoliation and delamination. J Alloys Compd 695, 818–826 (2017). doi: 10.1016/j.jallcom.2016.10.127

    CrossRef Google Scholar

    [14] Soundiraraju B, George BK. Two-dimensional titanium nitride (Ti2N) MXene: SYNTHESIS, characterization, and potential application as surface-enhanced raman scattering substrate. ACS Nano 11, 8892–8900 (2017). doi: 10.1021/acsnano.7b03129

    CrossRef Google Scholar

    [15] Naguib M, Unocic RR, Armstrong BL, Nanda J. Large-scale delamination of multi-layers transition metal carbides and carbonitrides “MXenes”. Dalton Trans 44, 9353–9358 (2015). doi: 10.1039/C5DT01247C

    CrossRef Google Scholar

    [16] Shahzad F, Alhabeb M, Hatter CB, Anasori B, Hong SM et al. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353, 1137–1140 (2016). doi: 10.1126/science.aag2421

    CrossRef Google Scholar

    [17] Dong YF, Wu ZS, Zheng SH, Wang XH, Qin JQ et al. Ti3C2 MXene-derived sodium/potassium titanate nanoribbons for high-performance sodium/potassium ion batteries with enhanced capacities. ACS Nano 11, 4792–4800 (2017). doi: 10.1021/acsnano.7b01165

    CrossRef Google Scholar

    [18] Yang QJ, GAO W, Zhong W, Tao ML, Qi YR et al. A synergistic Bi2S3/MXene composite with enhanced performance as an anode material of sodium-ion batteries. New J Chem 44, 3072–3077 (2020). doi: 10.1039/C9NJ05986E

    CrossRef Google Scholar

    [19] Li RY, Zhang LB, Shi L, Wang P. MXene Ti3C2: an effective 2D light-to-heat conversion material. ACS Nano 11, 3752–3759 (2017). doi: 10.1021/acsnano.6b08415

    CrossRef Google Scholar

    [20] Chaudhuri K, Alhabeb M, Wang ZX, Shalaev VM, Gogotsi Y et al. Highly broadband absorber using plasmonic titanium carbide (MXene). ACS Photonics 5, 1115–1122 (2018). doi: 10.1021/acsphotonics.7b01439

    CrossRef Google Scholar

    [21] Ying GB, Dillon AD, Fafarman AT, Barsoum MW. Transparent, conductive solution processed spincast 2D Ti2CTx (MXene) films. Mater Res Lett 5, 391–398 (2017). doi: 10.1080/21663831.2017.1296043

    CrossRef Google Scholar

    [22] An H, Habib T, Shah S, Gao HL, Radovic M et al. Surface-agnostic highly stretchable and bendable conductive MXene multilayers. Sci Adv 4, eaaq0118 (2018). doi: 10.1126/sciadv.aaq0118

    CrossRef Google Scholar

    [23] Jiang XT, Kuklin AV, Baev A, Ge YQ, Ågren H et al. Two-dimensional MXenes: from morphological to optical, electric, and magnetic properties and applications. Phys Rep 848, 1–58 (2020). doi: 10.1016/j.physrep.2019.12.006

    CrossRef Google Scholar

    [24] Xu YH, Wang XX, Zhang WL, Lv F, Guo SJ. Recent progress in two-dimensional inorganic quantum dots. Chem Soc Rev 47, 586–625 (2018). doi: 10.1039/C7CS00500H

    CrossRef Google Scholar

    [25] Zhang ZP, Zhang J, Chen N, Qu LT. Graphenequantum dots: an emerging material for energy-related applications and beyond. Energy Environ Sci 5, 8869–8890 (2012). doi: 10.1039/c2ee22982j

    CrossRef Google Scholar

    [26] Xu SJ, Li D, Wu PY. One-pot, facile, and versatile synthesis of monolayer MoS2/WS2 quantum dots as bioimaging probes and efficient electrocatalysts for hydrogen evolution reaction. Adv Funct Mater 25, 1127–1136 (2015). doi: 10.1002/adfm.201403863

    CrossRef Google Scholar

    [27] Huang JM, Kelley DF. Synthesis and characterization of MoSe2 and WSe2 nanoclusters. Chem Mater 12, 2825–2828 (2000). doi: 10.1021/cm0002517

    CrossRef Google Scholar

    [28] Huo BB, Liu BP, Chen T, Cui L, Xu GF et al. One-step synthesis of fluorescent boron nitride quantum dots via a hydrothermal strategy using melamine as nitrogen source for the detection of ferric ions. Langmuir 33, 10673–10678 (2017). doi: 10.1021/acs.langmuir.7b01699

    CrossRef Google Scholar

    [29] Xue Q, Zhang HJ, Zhu MS, Pei ZX, Li HF et al. Photoluminescent Ti3C2 MXene quantum dots for multicolor cellular imaging. Adv Mater 29, 1604847 (2017). doi: 10.1002/adma.201604847

    CrossRef Google Scholar

    [30] Xu Q, Yang WJ, Wen YY, Liu SK, Liu Z et al. Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes. Appl Mater Today 16, 90–101 (2019). doi: 10.1016/j.apmt.2019.05.001

    CrossRef Google Scholar

    [31] Shao JD, Zhang J, Jiang C, Lin J, Huang P. Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chem Eng J 400, 126009 (2020). doi: 10.1016/j.cej.2020.126009

    CrossRef Google Scholar

    [32] Shao BB, Liu ZF, Zeng GM, Wang H, Liang QH et al. Two-dimensional transition metal carbide and nitride (MXene) derived quantum dots (QDs): synthesis, properties, applications and prospects. J Mater Chem A 8, 7508–7535 (2020). doi: 10.1039/D0TA01552K

    CrossRef Google Scholar

    [33] Wang ZQ, Xuan JN, Zhao ZG, Li QW, Geng FX. Versatile cutting method for producing fluorescent ultrasmall MXene sheets. ACS Nano 11, 11559–11565 (2017). doi: 10.1021/acsnano.7b06476

    CrossRef Google Scholar

    [34] Xu Q, Ding L, Wen YY, Yang WJ, Zhou HK et al. High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti3C2 MXene quantum dots. J Mater Chem C 6, 6360–6369 (2018). doi: 10.1039/C8TC02156B

    CrossRef Google Scholar

    [35] Guan QW, Ma JF, Yang WJ, Zhang R, Zhang XJ et al. Highly fluorescent Ti3C2 MXene quantum dots for macrophage labeling and Cu2+ ion sensing. Nanoscale 11, 14123–14133 (2019). doi: 10.1039/C9NR04421C

    CrossRef Google Scholar

    [36] Lu SY, Sui LZ, Liu Y, Yong X, Xiao GJ et al. White photoluminescent Ti3C2 MXene quantum dots with two-photon fluorescence. Adv Sci 6, 1801470 (2019). doi: 10.1002/advs.201801470

    CrossRef Google Scholar

    [37] Huang DP, Xie Y, Lu DZ, Wang ZY, Wang JY et al. Demonstration of a white laser with V2C MXene-based quantum dots. Adv Mater 31, 1901117 (2019).

    Google Scholar

    [38] Yang GH, Zhao JL, Yi SZ, Wan XJ, Tang JN. Biodegradable and photostable Nb2C MXene quantum dots as promising nanofluorophores for metal ions sensing and fluorescence imaging. Sens Actuators B Chem 309, 127735 (2020). doi: 10.1016/j.snb.2020.127735

    CrossRef Google Scholar

    [39] Liu ZM, Wu ED, Wang JM, Qian YH, Xiang HM et al. Crystal structure and formation mechanism of (Cr2/3Ti1/3)3AlC2 MAX phase. Acta Mater 73, 186–193 (2014). doi: 10.1016/j.actamat.2014.04.006

    CrossRef Google Scholar

    [40] Zhang CF, Ma YL, Zhang XT, Abdolhosseinzadeh S, Sheng HW et al. Two‐dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy Environ Mater 3, 29–55 (2020). doi: 10.1002/eem2.12058

    CrossRef Google Scholar

    [41] Pietzka MA, Schuster JC. Summary of constitutional data on the aluminum-carbon-titanium system. J Phase Equilibria 15, 392–400 (1994). doi: 10.1007/BF02647559

    CrossRef Google Scholar

    [42] Atkinson HV, Davies S. Fundamental aspects of hot isostatic pressing: an overview. Metall Mater Trans A 31, 2981–3000 (2000). doi: 10.1007/s11661-000-0078-2

    CrossRef Google Scholar

    [43] Tzenov NV, Barsoum MW. Synthesis and characterization of Ti3AlC2. J Am Ceram Soc 83, 825–832 (2000).

    Google Scholar

    [44] Wang XH, Zhou YC. Oxidation behavior of Ti3AlC2 at 1000–1400°C in air. Corros Sci 45, 891–907 (2003). doi: 10.1016/S0010-938X(02)00177-4

    CrossRef Google Scholar

    [45] Shuck CE, Han MK, Maleski K, Hantanasirisakul K, Kim SJ et al. Effect of Ti3AlC2 MAX phase on structure and properties of resultant Ti3C2Tx MXene. ACS Appl Nano Mater 2, 3368–3376 (2019). doi: 10.1021/acsanm.9b00286

    CrossRef Google Scholar

    [46] Naguib M, Halim J, Lu J, Cook KM, Hultman L et al. New two-dimensional niobium and vanadium carbides as promising materials for Li-Ion batteries. J Am Chem Soc 135, 15966–15969 (2013). doi: 10.1021/ja405735d

    CrossRef Google Scholar

    [47] Schuster JC, Nowotny H. Investigations of the ternary systems (Zr, Hf, Nb, Ta)-Al-C and studies on complex carbides. Z Metallkd 71, 341–346 (1980).

    Google Scholar

    [48] Kovalev ID, Miloserdov PA, Gorshkov VA, Kovalev DY. Synthesis of Nb2AlC MAX phase by SHS metallurgy. Russ J Non-Ferrous Met 61, 126–131 (2020). doi: 10.3103/S1067821220010083

    CrossRef Google Scholar

    [49] Salama I, El-Raghy T, Barsoum MW. Synthesis and mechanical properties of Nb2AlC and (Ti,Nb)2AlC. J Alloys Compd 347, 271–278 (2002). doi: 10.1016/S0925-8388(02)00756-9

    CrossRef Google Scholar

    [50] Zhang W, Travitzky N, Hu C, Zhou Y, Greil P. Reactive hot pressing and properties of Nb2AlC. J. Am. Ceram. Soc 92, 2396–2399 (2009). doi: 10.1111/j.1551-2916.2009.03187.x

    CrossRef Google Scholar

    [51] Zhou WB, Li K, Zhu JQ, Tian SQ. Rapid synthesis of highly pure Nb2AlC using the spark plasma sintering technique. J Phys Chem Solids 120, 218–222 (2018). doi: 10.1016/j.jpcs.2018.04.029

    CrossRef Google Scholar

    [52] Alhabeb M, Maleski K, Anasori B, Lelyukh P, Clark L et al. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem Mater 29, 7633–7644 (2017). doi: 10.1021/acs.chemmater.7b02847

    CrossRef Google Scholar

    [53] Wang L, Tao WQ, Yuan LY, Liu ZR, Huang Q et al. Rational control of the interlayer space inside two-dimensional titanium carbides for highly efficient uranium removal and imprisonment. Chem Commun 53, 12084–12087 (2017). doi: 10.1039/C7CC06740B

    CrossRef Google Scholar

    [54] Pang JB, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ et al. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 48, 72–133 (2019). doi: 10.1039/C8CS00324F

    CrossRef Google Scholar

    [55] Lipatov A, Alhabeb M, Lukatskaya MR, Boson A, Gogotsi Y et al. Effect of synthesis on quality, electronic properties and environmental stability of individual monolayer Ti3C2 MXene flakes. Adv Electron Mater 2, 1600255 (2016). doi: 10.1002/aelm.201600255

    CrossRef Google Scholar

    [56] Zhang CF, Cui YY, Song L, Liu XF, Hu ZB. Microwave assisted one-pot synthesis of graphene quantum dots as highly sensitive fluorescent probes for detection of iron ions and pH value. Talanta 150, 54–60 (2016). doi: 10.1016/j.talanta.2015.12.015

    CrossRef Google Scholar

    [57] Li Z, Qin P, Wang L, Yang CS, Li YF et al. Amine-enriched graphene quantum dots for high-pseudocapacitance supercapacitors. Electrochim Acta 208, 260–266 (2016). doi: 10.1016/j.electacta.2016.05.030

    CrossRef Google Scholar

    [58] Feng RJ, Lei WY, Sui XY, Liu XF, Qi XY et al. Anchoring black phosphorus quantum dots on molybdenum disulfide nanosheets: a 0D/2D nanohybrid with enhanced visible−and NIR −light photoactivity. Appl Catal B Environ 238, 444–453 (2018). doi: 10.1016/j.apcatb.2018.07.052

    CrossRef Google Scholar

    [59] Li GS, Lian ZC, Wang WC, Zhang DQ, Li HX. Nanotube-confinement induced size-controllable g-C3N4 quantum dots modified single-crystalline TiO2 nanotube arrays for stable synergetic photoelectrocatalysis. Nano Energy 19, 446–454 (2016). doi: 10.1016/j.nanoen.2015.10.011

    CrossRef Google Scholar

    [60] Wang XW, Sun GZ, Li N, Chen P. Quantum dots derived from two-dimensional materials and their applications for catalysis and energy. Chem Soc Rev 45, 2239–2262 (2016). doi: 10.1039/C5CS00811E

    CrossRef Google Scholar

    [61] Xu Q, Ma JF, Khan W, Zeng XB, Li N et al. Highly green fluorescent Nb2C MXene quantum dots. Chem Commun 56, 6648–6651 (2020). doi: 10.1039/D0CC02131H

    CrossRef Google Scholar

    [62] Feng YF, Zhou FR, Deng QH, Peng C. Solvothermal synthesis of in situ nitrogen-doped Ti3C2 MXene fluorescent quantum dots for selective Cu2+ detection. Ceram Int 46, 8320–8327 (2020). doi: 10.1016/j.ceramint.2019.12.063

    CrossRef Google Scholar

    [63] Yu XH, Cai XK, Cui HD, Lee SW, Yu XF et al. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale 9, 17859–17864 (2017). doi: 10.1039/C7NR05997C

    CrossRef Google Scholar

    [64] Pandey P, Sengupta A, Parmar S, Bansode U, Gosavi S et al. CsPbBr3-Ti3C2Tx MXene QD/QD heterojunction: photoluminescence quenching, charge transfer, and Cd ion sensing application. ACS Appl Nano Mater 3, 3305–3314 (2020). doi: 10.1021/acsanm.0c00051

    CrossRef Google Scholar

    [65] Qin YL, Wang ZQ, Liu NY, Sun Y, Han DX et al. High-yield fabrication of Ti3C2Tx MXene quantum dots and their electrochemiluminescence behavior. Nanoscale 10, 14000–14004 (2018). doi: 10.1039/C8NR03903H

    CrossRef Google Scholar

    [66] Li YJ, Ding L, Guo YC, Liang ZQ, Cui HZ et al. Boosting the photocatalytic ability of g-C3N4 for hydrogen production by Ti3C2 MXene quantum dots. ACS Appl Mater Interfaces 11, 41440–41447 (2019). doi: 10.1021/acsami.9b14985

    CrossRef Google Scholar

    [67] Aliofkhazraei M. Handbook of Nanoparticles (Cham, Springer, 2015); http://doi.org/10.1007/978-3-319-15338-4.

    Google Scholar

    [68] Cao Y, Wu TT, Zhang K, Meng XD, Dai WH et al. Engineered exosome-mediated near-infrared-ii region V2C quantum dot delivery for nucleus-target low-temperature photothermal therapy. ACS Nano 13, 1499–1510 (2019). doi: 10.1021/acsnano.8b07224

    CrossRef Google Scholar

    [69] Liang QH, Liu XJ, Zeng GM, Liu ZF, Tang L et al. Surfactant-assisted synthesis of photocatalysts: mechanism, synthesis, recent advances and environmental application. Chem Eng J 372, 429–451 (2019). doi: 10.1016/j.cej.2019.04.168

    CrossRef Google Scholar

    [70] Xu GG, Niu YS, Yang XC, Jin ZY, Wang Y et al. Preparation of Ti3C2Tx mxene-derived quantum dots with white/blue-emitting photoluminescence and electrochemiluminescence. Adv Opt Mater 6, 1800951 (2018). doi: 10.1002/adom.201800951

    CrossRef Google Scholar

    [71] Xu YH, Wang ZT, Guo ZN, Huang H, Xiao QL et al. Solvothermal synthesis and ultrafast photonics of black phosphorus quantum dots. Adv Opt Mater 4, 1223–1229 (2016). doi: 10.1002/adom.201600214

    CrossRef Google Scholar

    [72] Tomita R, Yasu Y, Koike T, Akita M. Combining photoredox-catalyzed trifluoromethylation and oxidation with DMSO: facile synthesis of α-trifluoromethylated ketones from aromatic alkenes. Angew Chem Int Ed 53, 7144–7148 (2014). doi: 10.1002/anie.201403590

    CrossRef Google Scholar

    [73] Chang MC, Chen SA. Kinetics and mechanism of urethane reactions: phenyl isocyanate–alcohol systems. J Polym Sci Part A Polym Chem 25, 2543–2559 (1987). doi: 10.1002/pola.1987.080250919

    CrossRef Google Scholar

    [74] Zeng ZP, Yan YB, Chen J, Zan P, Tian QH et al. Boosting the photocatalytic ability of Cu2O nanowires for CO2 conversion by MXene quantum dots. Adv Funct Mater 29, 1806500 (2019). doi: 10.1002/adfm.201806500

    CrossRef Google Scholar

    [75] Zhou L, Wu FM, Yu JH, Deng QH, Zhang FA et al. Titanium carbide (Ti3C2Tx) MXene: a novel precursor to amphiphilic carbide-derived graphene quantum dots for fluorescent ink, light-emitting composite and bioimaging. Carbon 118, 50–57 (2017). doi: 10.1016/j.carbon.2017.03.023

    CrossRef Google Scholar

    [76] Xu HX, Zeiger BW, Suslick KS. Sonochemical synthesis of nanomaterials. Chem Soc Rev 42, 2555–2567 (2013). doi: 10.1039/C2CS35282F

    CrossRef Google Scholar

    [77] Malaki M, Maleki A, Varma RS. MXenes and ultrasonication. J Mater Chem A 7, 10843–10857 (2019). doi: 10.1039/C9TA01850F

    CrossRef Google Scholar

    [78] Bromberger Soquetta M, Schmaltz S, Wesz Righes F, Salvalaggio R, de Marsillac Terra L. Effects of pretreatment ultrasound bath and ultrasonic probe, in osmotic dehydration, in the kinetics of oven drying and the physicochemical properties of beet snacks. J Food Process Preserv 42, e13393 (2018). doi: 10.1111/jfpp.13393

    CrossRef Google Scholar

    [79] Mazzeo R. Editorial. Top Curr Chem 375, 1–36 (2017). doi: 10.1007/s41061-016-0088-1

    CrossRef Google Scholar

    [80] Dai WH, Dong HF, Zhang XJ. A semimetal-like molybdenum carbide quantum dots photoacoustic imaging and photothermal agent with high photothermal conversion efficiency. Materials (Basel) 11, 1776 (2018). doi: 10.3390/ma11091776

    CrossRef Google Scholar

    [81] Zhang TR, Jiang X, Li GC, Yao QF, Lee JY. A red-phosphorous-assisted ball-milling synthesis of few-layered Ti3C2Tx (MXene) nanodot composite. ChemNanoMat 4, 56–60 (2018). doi: 10.1002/cnma.201700232

    CrossRef Google Scholar

    [82] Cheng H, Ding LX, Chen GF, Zhang LL, Xue J et al. Molybdenum carbide nanodots enable efficient electrocatalytic nitrogen fixation under ambient conditions. Adv Mater 30, 1803694 (2018). doi: 10.1002/adma.201803694

    CrossRef Google Scholar

    [83] Wang YH, Li CL, Han XJ, Liu DW, Zhao HH et al. Ultrasmall Mo2C nanoparticle-decorated carbon polyhedrons for enhanced microwave absorption. ACS Appl Nano Mater 1, 5366–5376 (2018). doi: 10.1021/acsanm.8b01479

    CrossRef Google Scholar

    [84] Liu HL, Zhu JC, Lai ZH, Zhao RD, He D. A first-principles study on structural and electronic properties of Mo2C. Scr Mater 60, 949–952 (2009). doi: 10.1016/j.scriptamat.2009.02.010

    CrossRef Google Scholar

    [85] Choi Y, Kang B, Lee J, Kim S, Kim GT et al. Integrative approach toward uncovering the origin of photoluminescence in dual heteroatom-doped carbon nanodots. Chem Mater 28, 6840–6847 (2016). doi: 10.1021/acs.chemmater.6b01710

    CrossRef Google Scholar

    [86] Pan DY, Zhang JC, Li Z, Wu MH. Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots. Adv Mater 22, 734–738 (2010). doi: 10.1002/adma.200902825

    CrossRef Google Scholar

    [87] Liu S, Tian JQ, Wang L, Zhang YW, Qin XY et al. Hydrothermal treatment of grass: a low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu(II) ions. Adv Mater 24, 2037–2041 (2012). doi: 10.1002/adma.201200164

    CrossRef Google Scholar

    [88] Li XM, Rui MC, Song JZ, Shen ZH, Zeng HB. Carbon and graphene quantum dots for optoelectronic and energy devices: a review. Adv Funct Mater 25, 4929–4947 (2015). doi: 10.1002/adfm.201501250

    CrossRef Google Scholar

    [89] Soleymaniha M, Shahbazi MA, Rafieerad AR, Maleki A, Amiri A. Promoting role of mxene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Adv Healthc Mater 8, 1801137 (2019). doi: 10.1002/adhm.201801137

    CrossRef Google Scholar

    [90] Sk MA, Ananthanarayanan A, Huang L, Lim KH, Chen P. Revealing the tunable photoluminescence properties of graphene quantum dots. J Mater Chem C 2, 6954–6960 (2014). doi: 10.1039/C4TC01191K

    CrossRef Google Scholar

    [91] Bailey RE, Nie S. Alloyed semiconductor quantum dots: tuning the optical properties without changing the particle size. J Am Chem Soc 125, 7100–7106 (2003). doi: 10.1021/ja035000o

    CrossRef Google Scholar

    [92] Yang XL, Jia QJ, Duan FH, Hu B, Wang MH et al. Multiwall carbon nanotubes loaded with MoS2 quantum dots and MXene quantum dots: non–Pt bifunctional catalyst for the methanol oxidation and oxygen reduction reactions in alkaline solution. Appl Surf Sci 464, 78–87 (2019). doi: 10.1016/j.apsusc.2018.09.069

    CrossRef Google Scholar

    [93] Peng JH, Chen XZ, Ong WJ, Zhao XJ, Li N. Surface and heterointerface engineering of 2D MXenes and their nanocomposites: insights into electro- and photocatalysis. Chem 5, 18–50 (2019). doi: 10.1016/j.chempr.2018.08.037

    CrossRef Google Scholar

    [94] Chen X, Sun XK, Xu W, Pan CC, Zhou DL et al. Ratiometric photoluminescence sensing based on Ti3C2 MXene quantum dots as an intracellular pH sensor. Nanoscale 10, 1111–1118 (2018). doi: 10.1039/C7NR06958H

    CrossRef Google Scholar

    [95] Liu MW, Zhou J, He Y, Cai ZX, Ge YL et al. ε-Poly-L-lysine-protected Ti3C2 MXene quantum dots with high quantum yield for fluorometric determination of cytochrome c and trypsin. Microchim Acta 186, 770 (2019). doi: 10.1007/s00604-019-3945-0

    CrossRef Google Scholar

    [96] Puzder A, Williamson AJ, Grossman JC, Galli G. Surface chemistry of silicon nanoclusters. Phys Rev Lett 88, 097401 (2002). doi: 10.1103/PhysRevLett.88.097401

    CrossRef Google Scholar

    [97] Cho IW, Ryu MY. Effect of energy transfer on the optical properties of surface-passivated perovskite films with CdSe/ZnS quantum dots. Sci Rep 9, 18433 (2019). doi: 10.1038/s41598-019-54860-1

    CrossRef Google Scholar

    [98] Schubert EF, Kim JK. Solid-state light sources getting smart. Science 308, 1274–1278 (2005). doi: 10.1126/science.1108712

    CrossRef Google Scholar

    [99] Zhou BZ, Liu MJ, Wen YW, Li Y, Chen R. Atomic layer deposition for quantum dots based devices. Opto-Electronic Adv 3, 190043 (2020).

    Google Scholar

    [100] Yang ZW, Gao MY, Wu WJ, Yang XY, Sun XW et al. Recent advances in quantum dot-based light-emitting devices: challenges and possible solutions. Mater Today 24, 69–93 (2019). doi: 10.1016/j.mattod.2018.09.002

    CrossRef Google Scholar

    [101] Rafieerad A, Yan WA, Sequiera GL, Sareen N, Abu‐El‐Rub E et al. Application of Ti3C2 MXene quantum dots for immunomodulation and regenerative medicine. Adv Healthc Mater 8, 1900569 (2019). doi: 10.1002/adhm.201900569

    CrossRef Google Scholar

    [102] Zhu XW, Zhang Z, Xue ZJ, Huang CH, Shan Y et al. Understanding the selective detection of Fe3+ based on graphene quantum dots as fluorescent probes: the Ksp of a metal hydroxide-assisted mechanism. Anal Chem 89, 12054–12058 (2017). doi: 10.1021/acs.analchem.7b02499

    CrossRef Google Scholar

    [103] Hameed A, Azam A. Sensing capability of fluorescent sodium salt of amoxicillin. Am J Nanomater 1, 27–30 (2013).

    Google Scholar

    [104] Xu Q, Pu P, Zhao JG, Dong CB, Gao C et al. Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(III) detection. J Mater Chem A 3, 542–546 (2015). doi: 10.1039/C4TA05483K

    CrossRef Google Scholar

    [105] Wu P, Li Y, Yan XP. CdTe quantum dots (QDs) based kinetic discrimination of Fe2+ and Fe3+, and CdTe QDs-fenton hybrid system for sensitive photoluminescent detection of Fe2+. Anal Chem 81, 6252–6257 (2009). doi: 10.1021/ac900788w

    CrossRef Google Scholar

    [106] Shah H, Xin Q, Jia XR, Gong JR. Single precursor-based luminescent nitrogen-doped carbon dots and their application for iron (III) sensing. Arab J Chem 12, 1083–1091 (2019). doi: 10.1016/j.arabjc.2019.06.004

    CrossRef Google Scholar

    [107] Dai XL, Deng YZ, Peng XG, Jin YZ. Quantum-dot light-emitting diodes for large-area displays: towards the dawn of commercialization. Adv Mater 29, 1607022 (2017). doi: 10.1002/adma.201607022

    CrossRef Google Scholar

    [108] Hoshino A, Hanada, S, Yamamoto K. Toxicity of nanocrystal quantum dots: the relevance of surface modifications. Arch Toxicol 85, 707–720 (2011). doi: 10.1007/s00204-011-0695-0

    CrossRef Google Scholar

    [109] Zhang QX, Sun Y, Liu ML, Liu Y. Selective detection of Fe3+ ions based on fluorescence MXene quantum dots via a mechanism integrating electron transfer and inner filter effect. Nanoscale 12, 1826–1832 (2020). doi: 10.1039/C9NR08794J

    CrossRef Google Scholar

    [110] Desai ML, Basu H, Singhal RK, Saha S, Kailasa SK. Ultra-small two dimensional MXene nanosheets for selective and sensitive fluorescence detection of Ag+ and Mn2+ ions. Colloids Surf A Physicochem Eng Asp 565, 70–77 (2019). doi: 10.1016/j.colsurfa.2018.12.051

    CrossRef Google Scholar

    [111] Liang ZC, Kang M, Payne GF, Wang XH, Sun RC. Probing energy and electron transfer mechanisms in fluorescence quenching of biomass carbon quantum dots. ACS Appl Mater Interfaces 8, 17478–17488 (2016). doi: 10.1021/acsami.6b04826

    CrossRef Google Scholar

    [112] Guo Z, Zhu XH, Wang SG, Lei CY, Huang Y et al. Fluorescent Ti3C2 MXene quantum dots for an alkaline phosphatase assay and embryonic stem cell identification based on the inner filter effect. Nanoscale 10, 19579–19585 (2018). doi: 10.1039/C8NR05767B

    CrossRef Google Scholar

    [113] Liu MW, He Y, Zhou J, Ge LL, Zhou JG et al. A “naked-eye” colorimetric and ratiometric fluorescence probe for uric acid based on Ti3C2 MXene quantum dots. Anal Chim Acta 1103, 134–142 (2020). doi: 10.1016/j.aca.2019.12.069

    CrossRef Google Scholar

    [114] Zhang SL, Liu LW, Ren S, Li ZL, Zhao YH et al. Recent advances in nonlinear optics for bio-imaging applications. Opto-Electronic Adv 3, 200003 (2020). doi: 10.29026/oea.2020.200003

    CrossRef Google Scholar

    [115] Bruchez Jr M, Moronne M, Gin P, Weiss S, Alivisatos AP. Semiconductor nanocrystals as fluorescent biological labels. Science 281, 2013–2016 (1998). doi: 10.1126/science.281.5385.2013

    CrossRef Google Scholar

    [116] Chan WCW, Nie SM. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998). doi: 10.1126/science.281.5385.2016

    CrossRef Google Scholar

    [117] Yong KT, Law WC, Hu R, Ye L, Liu LW et al. Nanotoxicity assessment of quantum dots: from cellular to primate studies. Chem Soc Rev 42, 1236–1250 (2013). doi: 10.1039/C2CS35392J

    CrossRef Google Scholar

    [118] Rasool K, Helal M, Ali A, Ren CE, Gogotsi Y et al. Antibacterial activity of Ti3C2Tx MXene. ACS Nano 10, 3674–3684 (2016). doi: 10.1021/acsnano.6b00181

    CrossRef Google Scholar

    [119] Yang L, Dall'Agnese C, Dall'Agnese Y, Chen G, Gao Y et al. Surface-modified metallic Ti3C2Tx mxene as electron transport layer for planar heterojunction perovskite solar cells. Adv Funct Mater 29, 1905694 (2019). doi: 10.1002/adfm.201905694

    CrossRef Google Scholar

    [120] Fu HC, Ramalingam V, Kim H, Lin CH, Fang XS et al. MXene-contacted silicon solar cells with 11.5% efficiency. Adv Energy Mater 9, 1900180 (2019). doi: 10.1002/aenm.201900180

    CrossRef Google Scholar

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(11)

Tables(1)

Article Metrics

Article views(20202) PDF downloads(2841) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint