Yinghui Guo, Mingbo Pu, Xiaoliang Ma, et al. Advances of dispersion-engineered metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 3-22. doi: 10.3969/j.issn.1003-501X.2017.01.001
Citation: Yinghui Guo, Mingbo Pu, Xiaoliang Ma, et al. Advances of dispersion-engineered metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 3-22. doi: 10.3969/j.issn.1003-501X.2017.01.001

Advances of dispersion-engineered metamaterials

    Fund Project:
More Information
  • Metamaterials (MMs) composed of periodic resonant subwavelength structures exhibit exotic electromagnetic properties that do not exist in nature, and open an avenue for electromagnetic waves (EMWs) manipulation. Dispersion is an inherent property of MMs. By engineering the electromagnetic resonances of MMs, extraordinary dispersion can be achieved thereby one can break the traditional physical laws and manipulate the EWMs at will. Subsequently, a serial of applications emerge including super-resolution imaging/lithography, electromagnetic absorber/radiator and planar optical devices. In this review, we summarize several typical approaches, theories and relevant applications of dispersion engineering of MMs.
  • 加载中
  • [1] Saleh B E A, Teich M C. Fundamentals of Photonics[M]. 2nd ed. New Jersey: Wiley & Sons, 2007.

    Google Scholar

    [2] Jackson J D. Classical Electrodynamics[M]. 3rd ed. Hoboken: Wiley, 1999.

    Google Scholar

    [3] Kurtzke C. Suppression of fiber nonlinearities by appropriate dispersion management[J]. IEEE Photonics Technology Letters, 1993, 5(10): 1250-1253. doi: 10.1109/68.248444

    CrossRef Google Scholar

    [4] Ganapathy R. Soliton dispersion management in nonlinear optical fibers[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(12): 4544-4550. doi: 10.1016/j.cnsns.2012.03.039

    CrossRef Google Scholar

    [5] Wang Peng, Mohammad N, Menon R. Chromatic-aberration- corrected diffractive lenses for ultra-broadband focusing[J]. Scientific Reports, 2016, 6: 21545. doi: 10.1038/srep21545

    CrossRef Google Scholar

    [6] Kosaka H, Kawashima T, Tomita A, et al. Superprism phenomena in photonic crystals[J]. Physical Review B, 1998, 58(16): R10096-R10099. doi: 10.1103/PhysRevB.58.R10096

    CrossRef Google Scholar

    [7] Belshaw N S, Freedman P A, O'Nions R K, et al. A new variable dispersion double-focusing plasma mass spectrometer with performance illustrated for Pb isotopes[J]. International Journal of Mass Spectrometry, 1998, 181(1-3): 51-58. doi: 10.1016/S1387-3806(98)14150-7

    CrossRef Google Scholar

    [8] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669. doi: 10.1038/35570

    CrossRef Google Scholar

    [9] Barnes W L, Dereux A, Ebbesen T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830.

    Google Scholar

    [10] Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. Proceedings of the Physical Society of London, 1902, 18: 269. doi: 10.1088/1478-7814/18/1/325

    CrossRef Google Scholar

    [11] Zia R, Schuller J A, Chandran A, et al. Plasmonics: the next chip-scale technology[J]. Materialstoday, 2006, 9(7-8): 20-27.

    Google Scholar

    [12] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193. doi: 10.1126/science.1114849

    CrossRef Google Scholar

    [13] Luo Xiangang, Yan Lianshan. Surface plasmon polaritons and its applications[J]. IEEE Photonics Journal, 2012, 4(2): 590-595. doi: 10.1109/JPHOT.2012.2189436

    CrossRef Google Scholar

    [14] Luo Xiangang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201.

    Google Scholar

    [15] Luo Xiangang, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Applied Physics Letters, 2004, 84(23): 4780-4782. doi: 10.1063/1.1760221

    CrossRef Google Scholar

    [16] Luo Xiangang, Ishihara T. Subwavelength photolithography based on surface-plasmon polariton resonance[J]. Optics Express, 2004, 12(14): 3055-3065. doi: 10.1364/OPEX.12.003055

    CrossRef Google Scholar

    [17] Fang N, Lee H, Sun Cheng, et al. Sub-diffraction-limited optical imaging with a silver superlens[J]. Science, 2005, 308(5721): 534-537. doi: 10.1126/science.1108759

    CrossRef Google Scholar

    [18] Liu Zhaowei, Wei Qihuo, Zhang Xiang. Surface Plasmon interference nanolithography[J]. Nano Letters, 2005, 5(5): 957-961. doi: 10.1021/nl0506094

    CrossRef Google Scholar

    [19] Gao Ping, Yao Na, Wang Changtao, et al. Enhancing aspect profile of half-pitch 32nm and 22nm lithography with plasmonic cavity lens[J]. Applied Physics Letters, 2015, 106(9): 093110. doi: 10.1063/1.4914000

    CrossRef Google Scholar

    [20] 王长涛, 赵泽宇, 高平, 等.表面等离子体超衍射光学光刻[J].科学通报, 2016, 61(6): 585-599.

    Google Scholar

    Wang Changtao, Zhao Zeyu, Gao Ping, et al. Surface plasmon lithography beyond the diffraction limit[J]. Chinese Science Bulletin, 2016, 61(6): 585-599.

    Google Scholar

    [21] Maier S A. Plasmonics: Fundamentals and Applications[M]. New York: Springer, 2007.

    Google Scholar

    [22] Atwater H A. The promise of plasmonics[J]. Scientific American, 2007, 296: 56-62. doi: 10.1038/scientificamerican0407-56

    CrossRef Google Scholar

    [23] Luo Xiangang, Pu Mingbo, Ma Xiaoliang, et al. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices[J]. International Journal of Antennas & Propagation, 2015, 2015: 204127.

    Google Scholar

    [24] Raether H. Surface Plasmons on Smooth and Rough Surfaces and on Gratings[M]. Berlin: Springer-Verlag, 1988.

    Google Scholar

    [25] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966

    CrossRef Google Scholar

    [26] Melville D O S, Blaikie R J. Super-resolution imaging through a planar silver layer[J]. Optics Express, 2005, 13(6): 2127-2134. doi: 10.1364/OPEX.13.002127

    CrossRef Google Scholar

    [27] Ramakrishna S A, Pendry J B, Wiltshire M C K, et al. Imaging the near field[J]. Journal of Modern Optics, 2003, 50(9): 1419-1430. doi: 10.1080/09500340308235215

    CrossRef Google Scholar

    [28] Xiong Yi, Liu Zhaowei, Sun Cheng, et al. Two-dimensional Imaging by far-field superlens at visible wavelengths[J]. Nano Letters, 2007, 7(11): 3360-3365. doi: 10.1021/nl0716449

    CrossRef Google Scholar

    [29] Xu T, Fang L, Ma J, et al. Localizing surface plasmons with a metal-cladding superlens for projecting deep-subwavelength patterns[J]. Applied Physics B, 2009, 97(1): 175-179. doi: 10.1007/s00340-009-3615-8

    CrossRef Google Scholar

    [30] Wang Changtao, Gao Ping, Tao Xing, et al. Far field observation and theoretical analyses of light directional imaging in metamaterial with stacked metal-dielectric films[J]. Applied Physics Letters, 2013, 103(3): 031911. doi: 10.1063/1.4815924

    CrossRef Google Scholar

    [31] High A A, Devlin R C, Dibos A, et al. Visible-frequency hyperbolic metasurface[J]. Nature, 2015, 522(7555): 192-196. doi: 10.1038/nature14477

    CrossRef Google Scholar

    [32] Salandrino A, Engheta N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations[J]. Physical Review B, 2006, 74(7): 075103. doi: 10.1103/PhysRevB.74.075103

    CrossRef Google Scholar

    [33] Smolyaninov I I, Hung Y J, Davis C C. Magnifying superlens in the visible frequency range[J]. Science, 2007, 315(5819): 1699-1701. doi: 10.1126/science.1138746

    CrossRef Google Scholar

    [34] Jacob Z, Alekseyev L V, Narimanov E. Optical hyperlens: far-field imaging beyond the diffraction limit[J]. Optics Express, 2006, 14(18): 8247-8256. doi: 10.1364/OE.14.008247

    CrossRef Google Scholar

    [35] Guo Z, Zhao Z Y, Yan L S, et al. Moiré fringes characterization of surface plasmon transmission and filtering in multi metal-dielectric films[J]. Applied Physics Letters, 2014, 105(14): 141107. doi: 10.1063/1.4896022

    CrossRef Google Scholar

    [36] Xu Ting, Lezec H J. Visible-frequency asymmetric transmission devices incorporating a hyperbolic metamaterial[J]. Nature Communications, 2014, 5: 4141. doi: 10.1038/ncomms5141

    CrossRef Google Scholar

    [37] Xu Ting, Zhao Yanhui, Ma Junxian, et al. Sub-diffraction-limited interference photolithography with metamaterials[J]. Optics Express, 2008, 16(18): 13579-13584. doi: 10.1364/OE.16.013579

    CrossRef Google Scholar

    [38] Xiong Yi, Liu Zhaowei, Zhang Xiang. Projecting deep- subwavelength patterns from diffraction-limited masks using metal-dielectric multilayers[J]. Applied Physics Letters, 2008, 93(11): 111116. doi: 10.1063/1.2985898

    CrossRef Google Scholar

    [39] Liang Gaofeng, Wang Changtao, Zhao Zeyu, et al. Squeezing bulk plasmon polaritons through hyperbolic metamaterials for large area deep subwavelength interference lithography[J]. Advanced Optical Materials, 2015, 3(9): 1248-1256. doi: 10.1002/adom.v3.9

    CrossRef Google Scholar

    [40] Guo Yinghui, Yan Lianshan, Pan Wei, et al. A plasmonic splitter based on slot cavity[J]. Optics Express, 2011, 19(15): 13831- 13838. doi: 10.1364/OE.19.013831

    CrossRef Google Scholar

    [41] Guo Yinghui, Pu Mingbo, Zhao Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022-2029. doi: 10.1021/acsphotonics.6b00564

    CrossRef Google Scholar

    [42] Shi Haofei, Wang Changtao, Du Chunlei, et al. Beam manipulating by metallic nano-slits with variant widths[J]. Optics Express, 2005, 13(18): 6815-6820. doi: 10.1364/OPEX.13.006815

    CrossRef Google Scholar

    [43] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [44] Xu Yadong, Fu Yangyang, Chen Huanyang. Planar gradient metamaterials. Nature Reviews Materials, 2016, 1: 16067. doi: 10.1038/natrevmats.2016.67

    CrossRef Google Scholar

    [45] Pu Mingbo, Hu Chenggang, Wang Min, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure[J]. Optics Express, 2011, 19(18): 17413-17420. doi: 10.1364/OE.19.017413

    CrossRef Google Scholar

    [46] Pu Mingbo, Chen Po, Wang Yanqi, et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation[J]. Applied Physics Letters, 2013, 102(13): 131906.

    Google Scholar

    [47] Guo Yinghui, Wang Yanqin, Pu Mingbo, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5: 8434. doi: 10.1038/srep08434

    CrossRef Google Scholar

    [48] Feng Qin, Pu Mingbo, Hu Chenggang, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J].Optics Letters, 2012, 37(11): 2133-2135. doi: 10.1364/OL.37.002133

    CrossRef Google Scholar

    [49] Pu Mingbo, Wang Min, Hu Chenggang, et al. Engineering heavily doped silicon for broadband absorber in the terahertz regime[J].Optics Express, 2012, 20(23): 25513-25519. doi: 10.1364/OE.20.025513

    CrossRef Google Scholar

    [50] Ye Dexin, Wang Zhiyu, Xu Kuiwen, et al. Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption[J]. Physical Review Letters, 2013, 111(18): 187402. doi: 10.1103/PhysRevLett.111.187402

    CrossRef Google Scholar

    [51] Dirdal C A, Skaar J. Superpositions of Lorentzians as the class of causal functions[J]. Physical Review A, 2013, 88(3): 033834. doi: 10.1103/PhysRevA.88.033834

    CrossRef Google Scholar

    [52] Jiang Zhihao, Yun S, Lin Lan, et al. Tailoring dispersion for broadband low-loss optical metamaterials using deep- subwavelength inclusions[J]. Scientific Reports, 2013, 3: 1571. doi: 10.1038/srep01571

    CrossRef Google Scholar

    [53] Luo Xiangang, Ishihara T. Sub 100 nm lithography based on plasmon polariton resonance[C]. Proceedings of 2003 International Microprocesses and Nanotechnology Conference, Tokyo, Japan, 2003: 138-139.https://www.researchgate.net/publication/4056383_Sub_100_nm_lithography_based_on_plasmon_polariton_resonance

    Google Scholar

    [54] Yao Hanmin, Yu Guobin, Yan Peiying, et al. Patterning sub 100 nm isolated patterns with 436 nm lithography[C]. Proceedings of 2003 International Microprocesses and Nanotechnology Conference, Tokyo, Japan, 2003: 130.https://www.researchgate.net/publication/4056384_Patterning_sub_100_nm_isolated_patterns_with_436_nm_lithography

    Google Scholar

    [55] Wang Changtao, Gao Ping, Zhao Zeyu, et al. Deep sub- wavelength imaging lithography by a reflective plasmonic slab[J]. Optics Express, 2013, 21(18): 20683-20691. doi: 10.1364/OE.21.020683

    CrossRef Google Scholar

    [56] Luo Jun, Zeng Bo, Wang Changtao, et al. Fabrication of anisotropically arrayed nano-slots metasurfaces using reflective plasmonic lithography[J]. Nanoscale, 2015, 7(44): 18805- 18812. doi: 10.1039/C5NR05153C

    CrossRef Google Scholar

    [57] Zhao Zeyu, Luo Yunfei, Zhang Wei, et al. Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination[J]. Scientific Reports, 2015, 5: 15320. doi: 10.1038/srep15320

    CrossRef Google Scholar

    [58] Liu Zhaowei, Lee H, Xiong Yi, et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects[J]. Science, 2007, 315(5819): 1686. doi: 10.1126/science.1137368

    CrossRef Google Scholar

    [59] Ren Guowei, Wang Changtao, Yi Guangwei, et al. Subwavelength demagnification imaging and lithography using hyperlens with a plasmonic reflector layer[J]. Plasmonics, 2013, 8(2): 1065-1072. doi: 10.1007/s11468-013-9510-5

    CrossRef Google Scholar

    [60] Liu Ling, Liu Kaipeng, Zhao Zeyu, et al. Sub-diffraction demagnification imaging lithography by hyperlens with plasmonic reflector layer[J]. RSC Advances, 2016, 6: 95973-95978. doi: 10.1039/C6RA17098F

    CrossRef Google Scholar

    [61] Sun Jingbo, Xu T, Litchinitser N M. Experimental demonstration of demagnifying hyperlens[J]. Nano Letters, 2016, 16(12): 7905- 7909. doi: 10.1021/acs.nanolett.6b04175

    CrossRef Google Scholar

    [62] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782. doi: 10.1126/science.1125907

    CrossRef Google Scholar

    [63] Leonhardt U. Optical conformal mapping[J]. Science, 2006, 312(5781): 1777-1780. doi: 10.1126/science.1126493

    CrossRef Google Scholar

    [64] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980.

    Google Scholar

    [65] Hashemi H, Zhang Baile, Joannopoulos J D, et al. Delay-bandwidth and delay-loss limitations for cloaking of large objects[J]. Physical Review Letters, 2010, 104(25): 253903. doi: 10.1103/PhysRevLett.104.253903

    CrossRef Google Scholar

    [66] Li J, Pendry J B. Hiding under the carpet: a new strategy for cloaking[J]. Physical Review Letters, 2008, 101(20): 203901. doi: 10.1103/PhysRevLett.101.203901

    CrossRef Google Scholar

    [67] Liu R, Ji C, Mock J J, et al. Broadband ground-plane cloak[J]. Science, 2009, 323(5912): 366-369. doi: 10.1126/science.1166949

    CrossRef Google Scholar

    [68] Valentine J, Li J, Zentgraf T, et al. An optical cloak made of dielectrics[J]. Nature Materials, 2009, 8(7): 568-571. doi: 10.1038/nmat2461

    CrossRef Google Scholar

    [69] Gabrielli L H, Cardenas J, Poitras C B, et al. Silicon nanostructure cloak operating at optical frequencies[J]. Nature Photonics, 2009, 3(8): 461-463. doi: 10.1038/nphoton.2009.117

    CrossRef Google Scholar

    [70] Kundtz N, Smith D R. Extreme-angle broadband metamaterial lens[J]. Nature Materials, 2010, 9(2): 129-132. doi: 10.1038/nmat2610

    CrossRef Google Scholar

    [71] Ma Huifeng, Cui Tiejun. Three-dimensional broadband and broad-angle transformation-optics lens[J]. Nature Communications, 2010, 1(8): 124. doi: 10.1038/ncomms1126

    CrossRef Google Scholar

    [72] Zentgraf T, Liu Yongmin, Mikkelsen M H, et al. Plasmonic Luneburg and Eaton lenses[J]. Nature Nanotechnology, 2011, 6(3): 151-155. doi: 10.1038/nnano.2010.282

    CrossRef Google Scholar

    [73] Narimanov E E, Kildishev A V. Optical black hole: broadband omnidirectional light absorber[J]. Applied Physics Letters, 2009, 95(4): 041106. doi: 10.1063/1.3184594

    CrossRef Google Scholar

    [74] Cheng Qiang, Cui Tiejun, Jiang Weixiang, et al. An omnidirectional electromagnetic absorber made of metamaterials[J]. New Journal of Physics, 2010, 12(6): 063006. doi: 10.1088/1367-2630/12/6/063006

    CrossRef Google Scholar

    [75] Sheng Chong, Liu Hui, Wang Yueheng, et al. Trapping light by mimicking gravitational lensing[J]. Nature Photonics, 2013, 7(11): 902-906. doi: 10.1038/nphoton.2013.247

    CrossRef Google Scholar

    [76] Pu Mingbo, Zhao Zeyu, Wang Yanqin, et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping[J]. Scientific Reports, 2015, 5: 9822. doi: 10.1038/srep09822

    CrossRef Google Scholar

    [77] Ni Xingjie, Wong Zijing, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310- 1314. doi: 10.1126/science.aac9411

    CrossRef Google Scholar

    [78] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905. doi: 10.1103/PhysRevLett.96.163905

    CrossRef Google Scholar

    [79] Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [80] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion[J]. Scientific Reports, 2016, 6: 30154. doi: 10.1038/srep30154

    CrossRef Google Scholar

    [81] Lier E, Werner D H, Scarborough C P, et al. An octave- bandwidth negligible-loss radiofrequency metamaterial[J]. Nature Materials, 2011, 10(3): 216-222. doi: 10.1038/nmat2950

    CrossRef Google Scholar

    [82] Enoch S, Tayeb G, Sabouroux P, et al. A metamaterial for directive emission[J]. Physical Review Letters, 2002, 89(21): 213902. doi: 10.1103/PhysRevLett.89.213902

    CrossRef Google Scholar

    [83] Wang Min, Huang Cheng, Pu Mingbo, et al. Electric-controlled scanning Luneburg lens based on metamaterials[J]. Applied Physics A, 2013, 111(2): 445-450. doi: 10.1007/s00339-013-7603-9

    CrossRef Google Scholar

    [84] Bharadwaj P, Deutsch B, Novotny L. Optical antennas[J]. Advances in Optics and Photonics, 2009, 1(3): 438-483. doi: 10.1364/AOP.1.000438

    CrossRef Google Scholar

    [85] Fang Zheyu, Fan Linran, Lin Chenfang, et al. Plasmonic coupling of bow tie antennas with Ag nanowire[J]. Nano Letters, 2011, 11(4): 1676-1680. doi: 10.1021/nl200179y

    CrossRef Google Scholar

    [86] Greffet J J. Nanoantennas for light emission[J].Science, 2005, 308(5728): 1561-1562. doi: 10.1126/science.1113355

    CrossRef Google Scholar

    [87] Lezec H J, Degiron A, Devaux E, et al. Beaming light from a subwavelength aperture[J]. Science, 2002, 297(5582): 820-822. doi: 10.1126/science.1071895

    CrossRef Google Scholar

    [88] Martín-Moreno L, Garcia-Vidal F J, Lezec H J, et al. Theory of highly directional emission from a single subwavelength aperture surrounded by surface corrugations[J]. Physical Review Letters, 2003, 90(16): 167401. doi: 10.1103/PhysRevLett.90.167401

    CrossRef Google Scholar

    [89] Wang Changtao, Du Chunlei, Luo Xiangang. Refining the model of light diffraction from a subwavelength slit surrounded by grooves on a metallic film[J]. Physical Review B, 2006, 74(24): 245403. doi: 10.1103/PhysRevB.74.245403

    CrossRef Google Scholar

    [90] Wang Changtao, Du Chunlei, Lv Yueguang, et al. Surface electromagnetic wave excitation and diffraction by subwavelength slit with periodically patterned metallic grooves[J]. Optics Express, 2006, 14(12): 5671-5681. doi: 10.1364/OE.14.005671

    CrossRef Google Scholar

    [91] Li X, Zhao Z, Feng Q, et al. Abnormal nearly homogeneous radiation by slit-grooves structure[J]. Applied Physics B, 2011, 102(4): 851-855.

    Google Scholar

    [92] Yu Nanfang, Kats M A, Pflügl C, et al. Multi-beam multi-wavelength semiconductor lasers[J]. Applied Physics Letters, 2009, 95(16): 161108. doi: 10.1063/1.3253713

    CrossRef Google Scholar

    [93] Yu Nanfang, Fan J, Wang Qijie, et al. Small-divergence semiconductor lasers by plasmonic collimation[J]. Nature Photonics, 2008, 2(9): 564-570. doi: 10.1038/nphoton.2008.152

    CrossRef Google Scholar

    [94] Yu Nanfang, Capasso F. Wavefront engineering for mid-infrared and terahertz quantum cascade lasers[Invited][J]. Journal of the Optical Society of America B, 2010, 27(11): B18-B35. doi: 10.1364/JOSAB.27.000B18

    CrossRef Google Scholar

    [95] Aouani H, Mahboub O, Bonod N, et al. Bright unidirectional fluorescence emission of molecules in a nanoaperture with plasmonic corrugations[J]. Nano Letters, 2011, 11(2): 637-644. doi: 10.1021/nl103738d

    CrossRef Google Scholar

    [96] Jun Y C, Huang K C Y, Brongersma M L. Plasmonic beaming and active control over fluorescent emission[J]. Nature Communications, 2011, 2: 283. doi: 10.1038/ncomms1286

    CrossRef Google Scholar

    [97] Gorodetski Y, Drezet A, Genet C, et al. Generating far-field orbital angular momenta from near-field optical chirality[J]. Physical Review Letters, 2013, 110(20): 203906. doi: 10.1103/PhysRevLett.110.203906

    CrossRef Google Scholar

    [98] Pu Mingbo, Ma Xiaoliang, Zhao Zeyu, et al. Near-field collimation of light carrying orbital angular momentum with bull's-eye- assisted plasmonic coaxial waveguides[J]. Scientific Reports, 2015, 5: 12108. doi: 10.1038/srep12108

    CrossRef Google Scholar

    [99] Yu Nanfang, Wang Qijie, Kats M A, et al. Designer spoof surface plasmon structures collimate terahertz laser beams[J]. Nature Materials, 2010, 9(9): 730-735. doi: 10.1038/nmat2822

    CrossRef Google Scholar

    [100] Huang Cheng, Zhao Zeyu, Feng Qin, et al. Grooves-assisted surface wave modulation in two-slot array for mutual coupling reduction and gain enhancement[J]. IEEE Antennas and Wireless Propagation Letters, 2009, 8: 912-915. doi: 10.1109/LAWP.2009.2028587

    CrossRef Google Scholar

    [101] Huang Cheng, Du Chunlei, Luo Xiangang. A waveguide slit array antenna fabricated with subwavelength periodic grooves[J]. Applied Physics Letters, 2007, 91(14): 143512. doi: 10.1063/1.2794727

    CrossRef Google Scholar

    [102] Xu Ting, Wang Changtao, Du Chunlei, et al. Plasmonic beam deflector[J]. Optics Express, 2008, 16(7): 4753-4759. doi: 10.1364/OE.16.004753

    CrossRef Google Scholar

    [103] Li Yang, Li Xiong, Pu Mingbo, et al. Achromatic flat optical components via compensation between structure and material dispersions[J]. Scientific Reports, 2016, 6: 19885. doi: 10.1038/srep19885

    CrossRef Google Scholar

    [104] Xu Ting, Du Chunlei, Wang Changtao, et al. Subwavelength imaging by metallic slab lens with nanoslits[J]. Applied Physics Letters, 2007, 91(20): 201501. doi: 10.1063/1.2811711

    CrossRef Google Scholar

    [105] Verslegers L, Catrysse P B, Yu Zongfu, et al. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Letters, 2009, 9(1): 235-238. doi: 10.1021/nl802830y

    CrossRef Google Scholar

    [106] Ishii S, Shalaev V M, Kildishev A V. Holey-metal lenses: sieving single modes with proper phases[J]. Nano Letters, 2013, 13(1): 159-163. doi: 10.1021/nl303841n

    CrossRef Google Scholar

    [107] Xu Ting, Zhao Yanhui, Gan Dachun, et al. Directional excitation of surface plasmons with subwavelength slits[J]. Applied Physics Letters, 2008, 92(10): 101501. doi: 10.1063/1.2894183

    CrossRef Google Scholar

    [108] Sun Jingbo, Wang Xi, Xu T, et al. Spinning light on the nanoscale[J]. Nano Letters, 2014, 14(5): 2726-2729. doi: 10.1021/nl500658n

    CrossRef Google Scholar

    [109] West P R, Stewart J L, Kildishev A V, et al. All-dielectric subwavelength metasurface focusing lens[J]. Optics Express, 2014, 22(21): 26212-26221. doi: 10.1364/OE.22.026212

    CrossRef Google Scholar

    [110] Arbabi A, Horie Y, Ball A J, et al. Subwavelength-thick lenses with high numerical apertures and large efficiency based on high-contrast transmitarrays[J]. Nature Communications, 2015, 6: 7069. doi: 10.1038/ncomms8069

    CrossRef Google Scholar

    [111] Sun Shulin, He Qiong, Xiao Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431. doi: 10.1038/nmat3292

    CrossRef Google Scholar

    [112] Hasman E, Kleiner V, Biener G, et al. Polarization dependent focusing lens by use of quantized pancharatnam-berry phase diffractive optics[J]. Applied Physics Letters, 2003, 82(3): 328-330. doi: 10.1063/1.1539300

    CrossRef Google Scholar

    [113] Ni Xingjie, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427. doi: 10.1126/science.1214686

    CrossRef Google Scholar

    [114] Ni Xingjie, Ishii S, Kildishev A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Science & Applications, 2013, 2(4): e72.

    Google Scholar

    [115] Qin Fei, Ding Lu, Zhang Lei, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Science Advances, 2016, 2(1): e1501168. doi: 10.1126/sciadv.1501168

    CrossRef Google Scholar

    [116] Zhang Xueqian, Tian Zhen, Yue Weisheng, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 2013, 25(33): 4567-4572. doi: 10.1002/adma.201204850

    CrossRef Google Scholar

    [117] Liu Lixiang, Zhang Xueqian, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 2014, 26(29): 5031-5036. doi: 10.1002/adma.201401484

    CrossRef Google Scholar

    [118] Zhang Xueqian, Xu Yuehong, Yue Weisheng, et al. Anomalous surface wave launching by handedness phase control[J]. Advanced Materials, 2015, 27(44): 7123-7129. doi: 10.1002/adma.201502008

    CrossRef Google Scholar

    [119] Sun Shulin, Yang Kuangyu, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229. doi: 10.1021/nl3032668

    CrossRef Google Scholar

    [120] Li Yongfeng, Zhang Jieqiu, Qu Shaobo, et al. Wideband radar cross section reduction using two-dimensional phase gradient metasurfaces[J]. Applied Physics Letters, 2014, 104(22): 221110. doi: 10.1063/1.4881935

    CrossRef Google Scholar

    [121] Giovampaola C D, Engheta N. Digital metamaterials[J]. Nature Materials, 2014, 13(12):1115-1121. doi: 10.1038/nmat4082

    CrossRef Google Scholar

    [122] Cui Tiejun, Qi Meiqing, Wan Xiang, et al. Coding metamaterials, digital metamaterials and programmable metamaterials[J]. Light:Science & Applications, 2014, 3(10): e218.

    Google Scholar

    [123] Gao Lihua, Cheng Qiang, Yang Jing, et al. Broadband diffusion of terahertz waves by multi-bit coding metasurfaces[J]. Light: Science amp; Applications, 2015, 4(9): e324. doi: 10.1038/lsa.2015.97

    CrossRef Google Scholar

    [124] Li Xiong, Pu Mingbo, Zhao Zeyu, et al. Catenary nanostructures as compact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524. doi: 10.1038/srep20524

    CrossRef Google Scholar

    [125] Luo Xiangang, Pu Mingbo, Li Xiong, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017, 6: e16276. (in press

    Google Scholar

    [126] Sun Hongbo. The mystical interlinks: Mechanics, religion or optics?[J]. Sci China-Phys Mech Astron, 2016, 59: 614202. doi: 10.1007/s11433-015-5763-7

    CrossRef Google Scholar

    [127] Hong Minghui. Metasurface wave in planar nano-photonics[J].Science Bulletin, 2016, 61(2):112-113.

    Google Scholar

    [128] Ding Xumin, Monticone F, Zhang Kuang, et al. Ultrathin pancharatnam-berry metasurface with maximal cross- polarization efficiency[J]. Advanced Materials, 2015, 27(7): 1195-1200. doi: 10.1002/adma.201405047

    CrossRef Google Scholar

    [129] Landy N I, Sajuyigbe S, Mock J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402

    CrossRef Google Scholar

    [130] Shen Xiaopeng, Cui Tiejun, Zhao Junming, et al. Polarization-independent wide-angle triple-band metamaterial absorber[J]. Optics Express, 2011, 19(10): 9401-9407. doi: 10.1364/OE.19.009401

    CrossRef Google Scholar

    [131] Ye Yuqian, Jin Yi, He Sailing. Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime[J]. Journal of the Optical Society of America B, 2010, 27(3): 498-504. doi: 10.1364/JOSAB.27.000498

    CrossRef Google Scholar

    [132] Grant J, Ma Yong, Saha S, et al. Polarization insensitive, broadband terahertz metamaterial absorber[J]. Optics Letters, 2011, 36(17): 3476-3478. doi: 10.1364/OL.36.003476

    CrossRef Google Scholar

    [133] Hendrickson J, Guo Junpeng, Zhang Boyang, et al. Wideband perfect light absorber at midwave infrared using multiplexed metal structures[J]. Optics Letters, 2012, 37(3): 371-373. doi: 10.1364/OL.37.000371

    CrossRef Google Scholar

    [134] Cui Yanxia, Xu Jun, Fung K H, et al. A thin film broadband absorber based on multi-sized nanoantennas[J]. Applied Physics Letters, 2011, 99(25): 253101. doi: 10.1063/1.3672002

    CrossRef Google Scholar

    [135] Wang Jing, Chen Yiting, Chen Xi, et al. Photothermal reshaping of gold nanoparticles in a plasmonic absorber[J]. Optics Express, 2011, 19(15): 14726-14734. doi: 10.1364/OE.19.014726

    CrossRef Google Scholar

    [136] Hao Jiaming, Zhou Lei, Qiu Min. Nearly total absorption of light and heat generation by plasmonic metamaterials[J]. Physical Review B, 2011, 83(16): 165107. doi: 10.1103/PhysRevB.83.165107

    CrossRef Google Scholar

    [137] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Ultra-broadband terahertz absorbers based on 4×4 cascaded metal-dielectric pairs[J]. Plasmonics, 2014, 9(4): 951-957. doi: 10.1007/s11468-014-9701-8

    CrossRef Google Scholar

    [138] Ding Fei, Cui Yanxia, Ge Xiaochen, et al. Ultra-broadband microwave metamaterial absorber[J]. Applied Physics Letters, 2012, 100(10): 3506.

    Google Scholar

    [139] Cui Yanxia, Fung K H, Xu Jun, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443-1447. doi: 10.1021/nl204118h

    CrossRef Google Scholar

    [140] Yin Sheng, Zhu Jianfei, Xu Wendao, et al. High-performance terahertz wave absorbers made of silicon-based metamaterials[J].Applied Physics Letters, 2015, 107(7): 73903. doi: 10.1063/1.4929151

    CrossRef Google Scholar

    [141] Zang Xiaofei, Shi Cheng, Chen Lin, et al. Ultra-broadband terahertz absorption by exciting the orthogonal diffraction in dumbbell-shaped gratings[J]. Scientific Reports, 2015, 5: 8091. doi: 10.1038/srep08091

    CrossRef Google Scholar

    [142] Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(8): 1230-1234. doi: 10.1109/8.884491

    CrossRef Google Scholar

    [143] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface[J]. Optics Express, 2015, 23(21): 27566-27575. doi: 10.1364/OE.23.027566

    CrossRef Google Scholar

    [144] Shi Cheng, Zang Xiaofei, Wang Yiqiao, et al. A polarization-independent broadband terahertz absorber[J]. Applied Physics Letters, 2014, 105(3): 031104. doi: 10.1063/1.4890617

    CrossRef Google Scholar

    [145] Li Wei, Guler U, Kinsey N, et al. Refractory plasmonics with titanium nitride: broadband metamaterial absorber[J]. Advanced Materials, 2014, 26(47): 7959-7965. doi: 10.1002/adma.v26.47

    CrossRef Google Scholar

    [146] Jang T, Youn H, Shin Y J, et al. Transparent and flexible polarization-independent microwave broadband absorber[J]. ACS Photonics, 2014, 1(3): 279-284. doi: 10.1021/ph400172u

    CrossRef Google Scholar

    [147] Zhao Junming, Sun Liang, Zhu Bo, et al. One-way absorber for linearly polarized electromagnetic wave utilizing composite metamaterial[J]. Optics Express, 2015, 23(4): 4658-4665. doi: 10.1364/OE.23.004658

    CrossRef Google Scholar

    [148] Hao Jiaming, Yuan Yu, Ran Lixin, et al. Manipulating electromagnetic wave polarizations by anisotropic metamaterials[J]. Physical Review Letters, 2007, 99(6): 063908. doi: 10.1103/PhysRevLett.99.063908

    CrossRef Google Scholar

    [149] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J].Science, 2013, 340(6138): 1304-1307. doi: 10.1126/science.1235399

    CrossRef Google Scholar

    [150] Pu Mingbo, Feng Qin, Wang Min, et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination[J]. Optics Express, 2012, 20(3): 2246-2254. doi: 10.1364/OE.20.002246

    CrossRef Google Scholar

    [151] Pu Mingbo, Feng Qin, Hu Chenggang, et al. Perfect absorption of light by coherently induced plasmon hybridization in ultrathin metamaterial film[J]. Plasmonics, 2012, 7(4): 733-738. doi: 10.1007/s11468-012-9365-1

    CrossRef Google Scholar

    [152] Wang Yanqin, Pu Mingbo, Hu Chenggang, et al. Dynamic manipulation of polarization states using anisotropic meta-surface[J].Optics Communications, 2014, 319: 14-16. doi: 10.1016/j.optcom.2013.12.043

    CrossRef Google Scholar

    [153] Li Xiong, Pu Mingbo, Wang Yanqin, et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials[J].Advanced Optical Matererials, 2016, 4: 659-663. doi: 10.1002/adom.v4.5

    CrossRef Google Scholar

    [154] Li Sucheng, Luo Jie, Anwar S, et al. Broadband perfect absorption of ultrathin conductive films with coherent illumination: superabsorption of microwave radiation[J]. Physical Review B, 2015, 91(22): 220301. doi: 10.1103/PhysRevB.91.220301

    CrossRef Google Scholar

    [155] Li Sucheng, Duan Qian, Li Shuo, et al. Perfect electromagnetic absorption at one-atom-thick scale[J]. Applied Physics Letters, 2015, 107: 181112. doi: 10.1063/1.4935427

    CrossRef Google Scholar

    [156] Mousavi S A, Plum E, Shi Jinhui, et al. Coherent control of optical polarization effects in metamaterials[J]. Scientific Reports, 2015, 5: 8977. doi: 10.1038/srep08977

    CrossRef Google Scholar

    [157] Papaioannou M, Plum E, Valente J, et al. Two-dimensional control of light with light on metasurfaces[J]. Light: Science & Applications, 2016, 5: e16070.

    Google Scholar

    [158] Fan Kebin, Padilla W J. Dynamic electromagnetic metamaterials[J]. Materialstoday, 2015, 18(1): 39-50.

    Google Scholar

    [159] Zheludev N I, Plum E. Reconfigurable nanomechanical photonic metamaterials[J]. Nature Nanotechnology, 2016, 11(1): 16-22. doi: 10.1038/nnano.2015.302

    CrossRef Google Scholar

    [160] Wang Min, Hu Chenggang, Pu Mingbo, et al. Electrical tunable L-band absorbing material for two polarisations[J]. Electronics Letters, 2012, 48(16): 1002-1003. doi: 10.1049/el.2012.1318

    CrossRef Google Scholar

    [161] Wu Xiaoyu, Hu Chenggang, Wang Yanqin, et al. Active microwave absorber with the dual-ability of dividable modulation in absorbing intensity and frequency[J]. AIP Advances, 2013, 3(2): 022114. doi: 10.1063/1.4792069

    CrossRef Google Scholar

    [162] Zhu Bo, Feng Yijun, Zhao Junming, et al. Switchable metamaterial reflector/absorber for different polarized electromagnetic waves[J]. Applied Physics Letters, 2010, 97(5): 051906. doi: 10.1063/1.3477960

    CrossRef Google Scholar

    [163] Zhu Bo, Feng Yijun, Zhao Junming, et al. Polarization modulation by tunable electromagnetic metamaterial reflector/absorber[J]. Optics Express, 2010, 18(22): 23196-23203. doi: 10.1364/OE.18.023196

    CrossRef Google Scholar

    [164] Zhu Bo, Zhao Junming, Feng Yijun. Active impedance metasurface with full 360° reflection phase tuning[J]. Scientific Reports, 2013, 3: 3059. doi: 10.1038/srep03059

    CrossRef Google Scholar

    [165] Ma Xiaoliang, Pan Wenbo, Huang Cheng, et al. An active metamaterial for polarization manipulating[J]. Advanced Optical Materials, 2014, 2(10): 945-949. doi: 10.1002/adom.v2.10

    CrossRef Google Scholar

    [166] Cui Jianhua, Huang Cheng, Pan Wenbo, et al. Dynamical manipulation of electromagnetic polarization using anisotropic meta-mirror[J].Scientific Reports, 2016, 6: 30771.

    Google Scholar

    [167] Xu Hexiu, Sun Shulin, Tang Shiwei, et al. Dynamical control on helicity of electromagnetic waves by tunable metasurfaces[J]. Scientific Reports, 2016, 6: 27503. doi: 10.1038/srep27503

    CrossRef Google Scholar

    [168] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818-2823. doi: 10.1021/acs.nanolett.6b00618

    CrossRef Google Scholar

    [169] Chen J, Wang Weisong, Ji Fang, et al. Variable-focusing microlens with microfluidic chip[J]. Journal of Micromechanics and Microengineering, 2004, 14(5): 675-680. doi: 10.1088/0960-1317/14/5/003

    CrossRef Google Scholar

    [170] Shaltout A M, Kildishev A V, Shalaev V M. Evolution of photonic metasurfaces: from static to dynamic[J]. Journal of the Optical Society of America B, 2016, 33(3): 501-510. doi: 10.1364/JOSAB.33.000501

    CrossRef Google Scholar

    [171] Liu Ming, Yin Xiaobo, Ulin-Avila E, et al. A graphene-based broadband optical modulator[J]. Nature, 2011, 474(7349): 64- 67. doi: 10.1038/nature10067

    CrossRef Google Scholar

    [172] Fang Zheyu, Wang Yumin, Schlather A E, et al. Active tunable absorption enhancement with graphene nanodisk arrays[J]. Nano Letters, 2014, 14(1): 299-304. doi: 10.1021/nl404042h

    CrossRef Google Scholar

    [173] Li Wei, Chen Bigeng, Meng Chao, et al. Ultrafast all-optical graphene modulator[J]. Nano Letters, 2014, 14(2): 955-959. doi: 10.1021/nl404356t

    CrossRef Google Scholar

    [174] Wang Dacheng, Zhang Lingchao, Gu Yinghong, et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface[J]. Scientific Reports, 2015, 5: 15020. doi: 10.1038/srep15020

    CrossRef Google Scholar

    [175] Wang Dacheng, Zhang Lingchao, Gong Yandong, et al. Multiband switchable terahertz quarter-wave plates via phase- change metasurfaces[J]. IEEE Photonics Journal, 2016, 8(1): 5500308.

    Google Scholar

    [176] Wang Qian, Rogers E T F, Gholipour B, et al. Optically reconfigurable metasurfaces and photonic devices based on phase change materials[J]. Nature Photonics, 2016, 10(1): 60-65. doi: 10.1038/nphoton.2015.247

    CrossRef Google Scholar

    [177] Chen Yiguo, Li Xiong, Sonnefraud Y, et al. Engineering the phase front of light with phase-change material based planar lenses[J]. Scientific Reports, 2015, 5: 8660. doi: 10.1038/srep08660

    CrossRef Google Scholar

  • Abstract:Since it was firstly illustrated by the pronounced prism experiment of Isaac Newton, the chromatic dispersions in light matter interaction have been extensively explored. It is generally thought that the dispersion of materials introduces a significant wavelength dependence of the group velocity, leading to undesired signal distortion in communications system, chromatic aberration in imaging system and limited bandwidth of optical devices. However, if dispersions can be properly controlled, they will play a significant role in many applications. For example, dispersion management will suppress the nonlinearities of fiber dense wavelength division multiplexing (DWDM) system and the soliton propagation. Chromatic aberration can be corrected approximately by using materials that exhibit complementary dispersion. Nevertheless, because the dispersion of natural materials is determined by the electronic and molecular energy levels, traditional dispersion management technologies are cumbersome and cannot be required in integrated optics.

    With the development of advanced fabrication technology and material science in recent years, the interactions between electromagnetic waves and the matter in subwavelength scale have attracted tremendous interests. In this scale, the metamaterials composed of subwavelength resonant structures exhibit extraordinary dispersion properties. The macroscopic electromagnetic properties of MMs are decided by the specific geometry and arrangement of artificial molecules and thus offering unprecedented flexibility and superiority for dispersion engineering. Consequently, the associated permittivity and permeability can be tuned from positive to zero and negative over the entire electromagnetic range, which is concerned with a surprisingly rich set of exotic optical phenomena.

    Meanwhile, the excitations of SPP in metallic structures open an avenue to manipulation electromagnetic wave in nano-scale. The unique dispersion properties of SPP make it with a shrinking wavelength and the ability of local phase modulation. On one hand, the shrinking wavelength property can be utilized to achieve sub-diffraction imaging and super-resolution lithography. On the other hand, inspired by the local phase modulation ability of SPP, we can break the traditional refraction and reflection laws and manipulate electromagnetic wave in a prescribed and highly integrated manner. By introducing subwavelength apertures or antennas along the metal surface, one can harness the propagation and resonance of the SPP with specific frequency. Furthermore, the hybrid and coupling effect among pattern metallic films also increase the tenability of dispersion.

    In summary, the interaction between electromagnetic wave and the matter become more diverse and complex in subwavelength scale. Understanding the principle and approaches of dispersion engineering in metamaterials is helpful to design more satisfying optical devices and enhance the electromagnetic manipulation abilities. From this viewpoint, this review manuscript will summarize the recent advances in the theories, approaches and typical applications of dispersion engineering of metamaterials. An outlook of the challenges and future directions in this fascinating area of nanophotonics is also presented at the end of the manuscript.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(26)

Article Metrics

Article views(15872) PDF downloads(5744) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint