Jiaxing Wang, Qingbin Fan, Hui Zhang, et al. Research progress in plasmonic structural colors[J]. Opto-Electronic Engineering, 2017, 44(1): 23-33. doi: 10.3969/j.issn.1003-501X.2017.01.002
Citation: Jiaxing Wang, Qingbin Fan, Hui Zhang, et al. Research progress in plasmonic structural colors[J]. Opto-Electronic Engineering, 2017, 44(1): 23-33. doi: 10.3969/j.issn.1003-501X.2017.01.002

Research progress in plasmonic structural colors

More Information
  • Plasmonic structural colors originate from the interaction between light and metallic nanostructures. Rapid development in nanofabrication and characterization of plasmonic structures provides an efficient way to control light properties at subwavelength scale, which can generate plasmonic structural colors. Here we introduce several representative plasmonic nanostructures which can generate visible structural colors, including nanogratings, perforated metallic films, metal-insulator-metal resonators, dynamically tunable color generators and perfect absorbers. We highlight the properties of plasmonic colors and discuss the intrinsic plasmonic resonance mechanisms. Plasmonic structural colors have the advantages such as ultra-small patterns and rapid response of external change, which are believed to offer a promising future in high-resolution color displays and real-time colors controlling.
  • 加载中
  • [1] Armstrong E, O'Dwyer C. Artificial opal photonic crystals and inverse opal structures – fundamentals and applications from optics to energy storage[J]. Journal of Materials Chemistry, 2015, 3(24): 6109-6143.

    Google Scholar

    [2] Xu Ting, Shi Haofei, Wu Y K, et al. Structural colors: from plasmonic to carbon nanostructures[J]. Small, 2011, 7(22): 3128-3136. doi: 10.1002/smll.v7.22

    CrossRef Google Scholar

    [3] Padovani S, Puzzovio D, Sada C, et al. XAFS study of copper and silver nanoparticles in glazes of medieval middle-east lustreware (10th-13th century)[J]. Applied Physics A, 2006, 83(4): 521-528. doi: 10.1007/s00339-006-3558-4

    CrossRef Google Scholar

    [4] Colomban P. The use of metal nanoparticles to produce yellow, red and iridescent colour, from bronze age to present times in lustre pottery and glass: solid state chemistry, spectroscopy and nanostructure[J]. Journal of Nano Research, 2010, 8(27): 109-132.

    Google Scholar

    [5] Faraday M. The bakerian lecture: experimental relations of gold (and other metals) to light[J].Philosophical Transactions of the Royal Society of London, 1857, 147: 145-181. doi: 10.1098/rstl.1857.0011

    CrossRef Google Scholar

    [6] Mie G. Beiträge zur optik trüber medien, speziell kolloidaler metallüsungen[J]. Annalen Der Physik, 1908, 330(3): 377-445. doi: 10.1002/(ISSN)1521-3889

    CrossRef Google Scholar

    [7] Hedayati M K, Faupel F, Elbahri M. Review of plasmonic nanocomposite metamaterial absorber[J]. Materials, 2014, 7(2): 1221-1248. doi: 10.3390/ma7021221

    CrossRef Google Scholar

    [8] Murray W A, Barnes W L. Plasmonic materials[J]. Advanced Materials, 2007, 19(22): 3771-3782. doi: 10.1002/(ISSN)1521-4095

    CrossRef Google Scholar

    [9] Kildishev A V, Boltasseva A, Shalaev V M. Planar Photonics with Metasurfaces[J]. Science, 2013, 339(6125):1232009 doi: 10.1126/science.1232009

    CrossRef Google Scholar

    [10] Gu Yinghong, Zhang Lei, Yang J K W, et al. Color generation via subwavelength plasmonic nanostructures[J]. Nanoscale, 2015, 7(15): 6409-6419. doi: 10.1039/C5NR00578G

    CrossRef Google Scholar

    [11] Al-Salem S M, Lettieri P, Baeyens J. Recycling and recovery routes of plastic solid waste (PSW): a review[J]. Waste Management, 2009, 29(10): 2625-2643. doi: 10.1016/j.wasman.2009.06.004

    CrossRef Google Scholar

    [12] Kumar K, Duan Huigao, Hegde R S, et al. Printing colour at the optical diffraction limit[J]. Nature Nanotechnology, 2012, 7(9): 557-561. doi: 10.1038/nnano.2012.128

    CrossRef Google Scholar

    [13] Roberts A S, Pors A, Albrektsen O, et al. Subwavelength plasmonic color printing protected for ambient use[J]. Nano Letters, 2014, 14(2): 783-787. doi: 10.1021/nl404129n

    CrossRef Google Scholar

    [14] Tan S J, Zhang Lei, Zhu Di, et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures[J]. Nano Letters, 2014, 14(7): 4023-4029. doi: 10.1021/nl501460x

    CrossRef Google Scholar

    [15] Lueder E. Liquid crystal displays: addressing schemes and electro-optical effects[M]. 2nd ed. New York: Wiley Publishing, 2010.

    Google Scholar

    [16] Singh R R, Ho D, Nilchi A, et al. A CMOS/thin-film fluorescence contact imaging microsystem for DNA analysis[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2010, 57(5): 1029-1038. doi: 10.1109/TCSI.2010.2043990

    CrossRef Google Scholar

    [17] Yokogawa S, Burgos S P, Atwater H A. Plasmonic color filters for CMOS image sensor applications[J]. Nano Letters, 2012, 12(8): 4349-4354. doi: 10.1021/nl302110z

    CrossRef Google Scholar

    [18] Cho Y, Choi Y K, Sohn S H. Optical properties of neodymium-containing polymethylmethacrylate films for the organic light emitting diode color filter[J]. Applied Physics Letters, 2006, 89(5): 051102. doi: 10.1063/1.2244042

    CrossRef Google Scholar

    [19] Xin J Z, Hui K C, Wang K, et al. Thermal tuning of surface plasmon resonance: Ag gratings on barium strontium titanate thin films[J]. Applied Physics A, 2012, 107(1): 101-107. doi: 10.1007/s00339-011-6742-0

    CrossRef Google Scholar

    [20] Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193. doi: 10.1126/science.1114849

    CrossRef Google Scholar

    [21] Stockman M I. Nanoplasmonics: the physics behind the applications[J]. Physics Today, 2011, 64(2): 39-44. doi: 10.1063/1.3554315

    CrossRef Google Scholar

    [22] Arsenault A C, Míguez H, Kitaev V, et al. A polychromic, fast response metallopolymer gel photonic crystal with solvent and redox tunability: a step towards photonic ink (P-Ink)[J]. Advanced Materials, 2003, 15(6): 503-507. doi: 10.1002/adma.200390116

    CrossRef Google Scholar

    [23] Kim H, Ge Jianping, Kim J, et al. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal[J]. Nature Photonics, 2009, 3(9): 534-540. doi: 10.1038/nphoton.2009.141

    CrossRef Google Scholar

    [24] Cao Linyou, Fan Pengyu, Barnard E S, et al. Tuning the color of silicon nanostructures[J]. Nano Letters, 2010, 10(7): 2649-2654. doi: 10.1021/nl1013794

    CrossRef Google Scholar

    [25] Seo K, Wober M, Steinvurzel P, et al. Multicolored vertical silicon nanowires[J].Nano Letters, 2011, 11(4): 1851-1856. doi: 10.1021/nl200201b

    CrossRef Google Scholar

    [26] Ritchie R H, Arakawa E T, Cowan J J, et al. Surface-plasmon resonance effect in grating diffraction[J]. Physical Review Letters, 1968, 21(22): 1530-1533. doi: 10.1103/PhysRevLett.21.1530

    CrossRef Google Scholar

    [27] Homola J, Koudela I, Yee S S. Surface plasmon resonance sensors based on diffraction gratings and prism couplers: sensitivity comparison[J]. Sensors and Actuators B: Chemical, 1999, 54(1-2): 16-24. doi: 10.1016/S0925-4005(98)00322-0

    CrossRef Google Scholar

    [28] Kaplan A F, Xu Ting, Guo L J. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography[J]. Applied Physics Letters, 2011, 99(14): 143111. doi: 10.1063/1.3647633

    CrossRef Google Scholar

    [29] Zeng Beibei, Gao Yongkang, Bartoli F J. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters[J]. Scientific Reports, 2013, 3: 2840. doi: 10.1038/srep02840

    CrossRef Google Scholar

    [30] Yoon Y T, Park C H, Lee S S. Highly efficient color filter incorporating a thin metal-dielectric resonant structure[J]. Applied Physics Express, 2012, 5(2): 022501. doi: 10.1143/APEX.5.022501

    CrossRef Google Scholar

    [31] Park C H, Yoon Y T, Shrestha V R, et al. Electrically tunable color filter based on a polarization-tailored nano-photonic dichroic resonator featuring an asymmetric subwavelength grating[J]. Optics Express, 2013, 21(23): 28783-28793. doi: 10.1364/OE.21.028783

    CrossRef Google Scholar

    [32] Honma H, Takahashi K, Fukuhara M, et al. Free-standing aluminium nanowire arrays for high-transmission plasmonic colour filters[J]. IET Micro & Nano Letters, 2014, 9(12): 891-895.

    Google Scholar

    [33] Shrestha V R, Lee S S, Kim E S, et al. Polarization-tuned dynamic color filters incorporating a dielectric-loaded aluminum nanowire array[J]. Scientific Reports, 2015, 5: 12450. doi: 10.1038/srep12450

    CrossRef Google Scholar

    [34] Ye M, Hu X L, Sun L B, et al. Duty cycle dependency of the optical transmission spectrum in an ultrathin nanostructured Ag film[J]. Journal of Alloys and Compounds, 2015, 621: 244-249. doi: 10.1016/j.jallcom.2014.09.202

    CrossRef Google Scholar

    [35] Kedawat G, Kumar P, Vijay Y K, et al. Fabrication of highly efficient resonant structure assisted ultrathin artificially stacked Ag/ZnS/Ag multilayer films for color filter applications[J]. Journal of Materials Chemistry C, 2015, 3(26): 6745-6754. doi: 10.1039/C5TC00678C

    CrossRef Google Scholar

    [36] Duempelmann L, Luu-Dinh A, Gallinet B, et al. Four-fold color filter based on plasmonic phase retarder[J]. ACS Photonics, 2016, 3(2): 190-196. doi: 10.1021/acsphotonics.5b00604

    CrossRef Google Scholar

    [37] Kaplan A F, Xu Ting, Wu Y K, et al. Multilayer pattern transfer for plasmonic color filter applications[J]. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, 2010, 28(6): C6060-C6063.

    Google Scholar

    [38] Wang Jiaxing, Fan Qingbin, Zhang Si, et al. Ultra-thin plasmonic color filters incorporating free-standing resonant membrane waveguides with high transmission efficiency[J]. Applied Physics Letters, 2017, in press.

    Google Scholar

    [39] Ebbesen T W, Lezec H J, Ghaemi H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669. doi: 10.1038/35570

    CrossRef Google Scholar

    [40] Ghaemi H F, Thio T, Grupp D E, et al. Surface plasmons enhance optical transmission through subwavelength holes[J]. Physical Review B, 1998, 58(11): 6779. doi: 10.1103/PhysRevB.58.6779

    CrossRef Google Scholar

    [41] Genet C, Ebbesen T W. Light in tiny holes[J]. Nature, 2007, 445(7123): 39-46. doi: 10.1038/nature05350

    CrossRef Google Scholar

    [42] Cheng F, Gao J, Luk T S, et al. Structural color printing based on plasmonic metasurfaces of perfect light absorption[J]. Scientific Reports, 2015, 5:11045. doi: 10.1038/srep11045

    CrossRef Google Scholar

    [43] Liu Y J, Si G Y, Leong E S, et al. Light-driven plasmonic color filters by overlaying photoresponsive liquid crystals on gold annular aperture arrays.[J]. Advanced Materials, 2012, 24(23):OP131-5.

    Google Scholar

    [44] Li Zhibo, Clark A W, Cooper J M. Dual color plasmonic pixels create a polarization controlled nano color palette[J]. ACS Nano, 2016, 10(1): 492-498. doi: 10.1021/acsnano.5b05411

    CrossRef Google Scholar

    [45] Lee H S, Yoon Y T, Lee S S, et al. Color filter based on a subwavelength patterned metal grating[J]. Optics Express, 2007, 15(23): 15457-15463. doi: 10.1364/OE.15.015457

    CrossRef Google Scholar

    [46] Chen Qin, Cumming D R S. High transmission and low color cross-talk plasmonic color filters using triangular-lattice hole arrays in aluminum films[J]. Optics Express, 2010, 18(13): 14056-14062. doi: 10.1364/OE.18.014056

    CrossRef Google Scholar

    [47] Chen Qin, Chitnis D, Walls K, et al. CMOS photodetectors integrated with plasmonic color filters[J]. IEEE Photonics Technology Letters, 2012, 24(3): 197-199. doi: 10.1109/LPT.2011.2176333

    CrossRef Google Scholar

    [48] Rajasekharan R, Balaur E, Minovich A, et al. Filling schemes at submicron scale: development of submicron sized plasmonic colour filters[J]. Scientific Reports, 2014, 4: 6435.

    Google Scholar

    [49] Park C H, Yoon Y T, Lee S S. Polarization-independent visible wavelength filter incorporating a symmetric metal-dielectric resonant structure[J]. Optics Express, 2012, 20(21): 23769-23777. doi: 10.1364/OE.20.023769

    CrossRef Google Scholar

    [50] Yu Yan, Chen Qin, Wen Long, et al. Spatial optical crosstalk in CMOS image sensors integrated with plasmonic color filters[J]. Optics Express, 2015, 23(17): 21994-22003. doi: 10.1364/OE.23.021994

    CrossRef Google Scholar

    [51] Degiron A, Ebbesen T W. The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures[J]. Journal of Optics A: Pure and Applied Optics, 2005, 7(2): S90-S96. doi: 10.1088/1464-4258/7/2/012

    CrossRef Google Scholar

    [52] Sun L B, Hu X L, Zeng Beibei, et al. Effect of relative nanohole position on colour purity of ultrathin plasmonic subtractive colour filters[J]. Nanotechnology, 2015, 26(30): 305204. doi: 10.1088/0957-4484/26/30/305204

    CrossRef Google Scholar

    [53] Dionne J A, Sweatlock L A, Atwater H A, et al. Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization[J]. Physical Review B, 2006, 73(3): 035407. doi: 10.1103/PhysRevB.73.035407

    CrossRef Google Scholar

    [54] Bozhevolnyi S I, Volkov V S, Devaux E, et al. Channel plasmon subwavelength waveguide components including interferometers and ring resonators[J]. Nature, 2006, 440(7083): 508-511. doi: 10.1038/nature04594

    CrossRef Google Scholar

    [55] Lindquist N C, Luhman W A, Oh S H, et al. Plasmonic nanocavity arrays for enhanced efficiency in organic photovoltaic cells[J]. Applied Physics Letters, 2008, 93(12): 123308. doi: 10.1063/1.2988287

    CrossRef Google Scholar

    [56] Kang M G, Xu Ting, Park H J, et al. Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes[J]. Advanced Materials, 2010, 22(39): 4378-4383. doi: 10.1002/adma.v22:39

    CrossRef Google Scholar

    [57] Lezec H J, Dionne J A, Atwater H A. Negative refraction at visible frequencies[J]. Science, 2007, 316(5823): 430-432. doi: 10.1126/science.1139266

    CrossRef Google Scholar

    [58] Chen Huajin, Liu Shiyang. Manipulating electromagnetic wave with the magnetic surface plasmon based metamaterials[J]. Applied Physics A, 2012, 107(2): 363-370. doi: 10.1007/s00339-012-6802-0

    CrossRef Google Scholar

    [59] Diest K, Dionne J A, Spain M, et al. Tunable color filters based on metal-insulator-metal resonators[J]. Nano Letters, 2009, 9(7): 2579-2583. doi: 10.1021/nl900755b

    CrossRef Google Scholar

    [60] Xu Ting, Wu Y K, Luo Xiangang, et al. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging[J]. Nature Communications, 2010, 1: 59.

    Google Scholar

    [61] Park H J, Xu Ting, Lee J Y, et al. Photonic color filters integrated with organic solar cells for energy harvesting[J]. ACS Nano, 2011, 5(9): 7055-7060. doi: 10.1021/nn201767e

    CrossRef Google Scholar

    [62] Chen Houtong, Padilla W J, Zide J M O, et al. Active terahertz metamaterial devices[J]. Nature, 2006, 444(7119): 597-600. doi: 10.1038/nature05343

    CrossRef Google Scholar

    [63] Shaltout A, Liu Jingjing, Shalaev V M, Kildishev A V. Optically active metasurface with non-chiral plasmonic nanoantennas[J]. Nano Letters, 2014, 14(8): 4426-4431. doi: 10.1021/nl501396d

    CrossRef Google Scholar

    [64] Yoo M, Lim S. Active metasurface for controlling reflection and absorption properties[J]. Applied Physics Express, 2014, 7(11): 112204. doi: 10.7567/APEX.7.112204

    CrossRef Google Scholar

    [65] Si Guangyuan, Zhao Yanhui, Leong E S P, et al. Liquid-crystal-enabled active plasmonics: a review[J]. Materials, 2014, 7(2): 1296-1317. doi: 10.3390/ma7021296

    CrossRef Google Scholar

    [66] Xu Ting, Walter E C, Agrawal A, et al. High-contrast and fast electrochromic switching enabled by plasmonics[J]. Nature Communications, 2016, 7: 10479. doi: 10.1038/ncomms10479

    CrossRef Google Scholar

    [67] Wang Guoping, Chen Xuechen, Liu Sheng, et al. Mechanical chameleon through dynamic real-time plasmonic tuning[J]. ACS Nano, 2016, 10(2): 1788–1794. doi: 10.1021/acsnano.5b07472

    CrossRef Google Scholar

    [68] Liu Y J, Si G Y, Leong E S P, et al. Optically tunable plasmonic color filters[J]. Applied Physics A, 2012, 107(1): 49-54. doi: 10.1007/s00339-011-6736-y

    CrossRef Google Scholar

    [69] Boltasseva A, Atwater H A. Low-loss plasmonic metamaterials[J]. Science, 2011, 331(6015): 290-291. doi: 10.1126/science.1198258

    CrossRef Google Scholar

    [70] Hedayati M K, Faupel F, Elbahri M. Review of plasmonic nanocomposite metamaterial absorber[J]. Materials, 2014, 7(2):

    Google Scholar

    [71] Asadchy V S, Faniayeu I A, Ra'di Y, et al. Broadband reflectionless metasheets: frequency-selective transmission and perfect absorption[J]. Physical Review X, 2015, 5(3): 031005. doi: 10.1103/PhysRevX.5.031005

    CrossRef Google Scholar

    [72] Ra'di Y, Simovski C R, Tretyakov S A. Thin perfect absorbers for electromagnetic waves: theory, design, and realizations[J]. Physical Review Applied, 2015, 3(3): 037001. doi: 10.1103/PhysRevApplied.3.037001

    CrossRef Google Scholar

    [73] Yang Chenying, Ji Chengang, Shen Weidong, et al. Compact multilayer film structures for ultrabroadband, omnidirectional, and efficient absorption[J]. ACS Photonics, 2016, 3(4): 590–596. doi: 10.1021/acsphotonics.5b00689

    CrossRef Google Scholar

    [74] Liang Qiuqun, Wang Taisheng, Lu Zhenwu, et al. Metamaterial-based two dimensional plasmonic subwavelength structures offer the broadest waveband light harvesting[J]. Advanced Optical Materials, 2013, 1(1): 43-49.

    Google Scholar

    [75] He S, Ding F, Mo L, et al. Light absorber with an ultra-broad flat band based on multi-sized slow-wave hyperbolic metamaterial thin-films[J]. Progress in Electromagnetics Research, 2014, 147: 69-79. doi: 10.2528/PIER14040306

    CrossRef Google Scholar

    [76] Zhou Lin, Tan Yingling, Ji Dengxin, et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation[J]. Science Advances, 2016, 2(4): e1501227. doi: 10.1126/sciadv.1501227

    CrossRef Google Scholar

    [77] Hedayati M K, Elbahri M. Review of Metasurface Plasmonic Structural Color[J]. Plasmonics, 2016:1-17.

    Google Scholar

    [78] Kristensen A, Yang J K W, Bozhevolnyi S I, et al. Plasmonic colour generation[J]. Nature Review Materials, 2016, 2:16088.

    Google Scholar

    [79] Jardret V, Lucas B N, Oliver W, et al. Scratch durability of automotive clear coatings: a quantitative, reliable and robust methodology[J]. Journal of Coatings Technology, 2000, 72(8): 79-88. doi: 10.1007/BF02698026

    CrossRef Google Scholar

    [80] Schulz U, Wachtendorf V, Klimmasch T, et al. The influence of weathering on scratches and on scratch and mar resistance of automotive coatings[J]. Progress in Organic Coatings, 2001, 42(1-2): 38-48. doi: 10.1016/S0300-9440(01)00148-5

    CrossRef Google Scholar

  • Abstract:Perception of color with our eyes is one of the major sources of information that we gain from our surroundings. The color of an object depends on which portion of light (range of wavelengths) reaches our eyes. In nature, structural colors are often caused by the interaction of light with dielectric structures whose dimensions are on the order of visible-light wavelengths. For example, in beetles, the color is originated from the microstructure of the skin which is acting as scattering center; while in some butterflies, the colorful patterns are routed from the reflection from the top of the wings. Different optical interactions, including multilayer interference, light scattering and photonic crystal effect, give rise to selective transmission or reflection of particular light wavelengths, which leads to the generation of structural colors. With the consumption of dyes and pigments, recycling of colored discarded materials has been a very difficult issue because of the hardships in relation to the dissociation of diverse chemical compounds present in the colorant agents. Plasmonic colors therefore draw attention as they enable generation of vivid colors only by geometrical arrangement of metals which not only eases the recycling but also enhances the chemical stability of the colors. Plasmonic colors are structural colors that originate from the interaction between light and metallic nanostructures. Rapid development in nanofabrication and characterization of plasmonic structures provides an efficient way to control light properties at subwavelength scale, which can generate plasmonic structural colors. The engineering of plasmonic colors is a promising, rapidly emerging research field that could have a large technological impact. Artificial surfaces, in particular, on which the colors are generated via a resonant interaction between light and subwavelength metallic nanostructures, have emerged as nanomaterials or metamaterials for the realization of structural colors. Here we introduce several representative plasmonic nanostructures which can generate visible structural colors, including nanogratings, perforated metallic films, metal-insulator-metal resonators, dynamically tunable color generators and perfect absorbers. We highlight the properties of plasmonic colors and discuss the intrinsic plasmonic resonance mechanisms. Plasmonic structural colors have features of sub-diffraction localization, high-fidelity color rendering and rapid responses of external changes, which are believed to offer a promising future in the applications including ultra-high resolution color display, spectral filtering and sensing, holography, three-dimensional stereoscopic imaging and real-time colors controlling with extremely compact device architectures.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Article Metrics

Article views(14539) PDF downloads(5306) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint