Chen Po. Ultra-broadband terahertz polarization transformers using dispersion-engineered anisotropic metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 82-86. doi: 10.3969/j.issn.1003-501X.2017.01.008
Citation: Chen Po. Ultra-broadband terahertz polarization transformers using dispersion-engineered anisotropic metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 82-86. doi: 10.3969/j.issn.1003-501X.2017.01.008

Ultra-broadband terahertz polarization transformers using dispersion-engineered anisotropic metamaterials

More Information
  • Abstract: The ability to manipulate the polarization of electromagnetic waves is sought-after for numerous applications. Traditional polarization rotation devices utilizing natural occurring birefringence or total internal reflection effects are bulky. As an alternative solution, metamaterial-based converters exhibiting strong anisotropy or chiral can be extremely compact and thus flourished in the last decade. Nevertheless, metamaterial-based schemes suffer from the narrow bandwidth due to their highly dispersive meta-molecules.

    Achromatic polarization converters operating in the terahertz band are highly anticipated due to the lack of suitable natural materials for terahertz device applications. Many excellent attempts have been carried out to extend the working bandwidth in different frequency regimes but at the cost of increased physical thickness, fundamentally ruled by the theoretical thickness-to-bandwidth ratio limit. Dispersion engineering is a promising method to approach the thickness-to-bandwidth ratio limit, which has been implemented in various meta-atoms such as, cross- and I-shaped metallic patch as well as split-ring resonators for broadband electromagnetic absorption and polarization manipulation.

    In this paper, we propose the design of anisotropic metamaterials constructed by cascading meta-atoms with orthogonal orientation for two-dimensional dispersion management. Each meta-atom array behaves as an impedance-tuned interface, which dramatically modifies the complex reflection and transmission coefficients at the impedance interface. The cascading meta-atoms behave like a log-period configuration, well-known in broadband antenna design. By engineering the frequency-dependent impedances of the orthogonal meta-atoms, the reflection phase difference along the two axes of anisotropic metamaterials can approximate to a constant in a wide range.

    Based on the above design principle, we numerically demonstrate the proposed anisotropic metamaterials with full released dispersion engineering ability in two dimensions can accomplish achromatic polarization transformation from 0.5 THz to 3.1 THz, i.e., the operation bandwidth is beyond 2-octave band. The polarization conversion ratio is higher than 80%, which exhibits excellent agreement with the theoretical calculation. Such design is scalable to other bands and can provide helpful guidance in broadband devices design.

  • 加载中
  • Figure 1.  Schematic concept of wideband polarization-transforming electromagnetic mirror based on log-periodic antennas.

    Figure 2.  Schematic of the proposed anisotropic meta-mirrors for achromatic polarization manipulation, which is constructed by two meta-atoms array and a metallic reflection plane separated by dielectric spacers. The dielectric thicknesses from top to bottom are d0, d1 and d2, respectively. The period of the metasurface is (Px/2, Py/2) and (Px, Py) for the upper one and bottom one, respectively.

    Figure 3.  (a) Simulated reflectance of the co- and opposite- circular polarizations. (b) Simulated and theoretically calculated polarization conversion ratio.

    Figure 4.  Simulated (solid line) and calculated (dash line) anisotropic dispersions of the metasurface and the phase difference Δϕ. TLM: transmission line model.

    Figure 5.  Schematic of the transmission line mode for achromatic polarization conversion.

    Figure 6.  Retrieved impedance of (a) Metasurface 1 and (b) Metasurface 2 by equivalent circuit theory.

    Figure 7.  (a)~(e) Magnetic field distributions of the unit cell at frequencies of 1, 1.5, 2, 2.5 and 3 THz, respectively.

  • [1]

    Flanders D C. Submicrometer periodicity gratings as artificial anisotropic dielectrics[J]. Applied Physics Letters, 1983, 42(6): 492-494. doi: 10.1063/1.93979

    [2]

    Ma Xiaoliang, Pan Wenbo, Huang Cheng, et al. An active metamaterial for polarization manipulating[J]. Advanced Optical Materials, 2014, 2(10): 945-949. doi: 10.1002/adom.v2.10

    [3]

    Gansel J K, Thiel M, Rill M S, et al. Gold helix photonic metamaterial as broadband circular polarizer[J]. Science, 2009, 325(5947): 1513-1515. doi: 10.1126/science.1177031

    [4]

    Yu Nanfang, Aieta F, Genevet P, et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces[J]. Nano Letters, 2012, 12(12): 6328-6333. doi: 10.1021/nl303445u

    [5]

    Luo Xiangang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201. https://link.springer.com/article/10.1007/s11433-015-5688-1

    [6]

    Luo Xiangang, Pu Mingbo, Ma Xiaoliang, et al. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices[J]. International Journal of Antennas and Propagation, 2015, 2015: 204127. https://www.researchgate.net/publication/281677037_Taming_the_Electromagnetic_Boundaries_via_Metasurfaces_From_Theory_and_Fabrication_to_Functional_Devices

    [7]

    Sun Shulin, Yang Kuangyu, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229. doi: 10.1021/nl3032668

    [8]

    Lin Jiao, Mueller J P B, Wang Qian, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 2013, 340(6130): 331-334. doi: 10.1126/science.1233746

    [9]

    Lin Jiao, Wang Qian, Yuan Guanghui, et al. Mode-matching metasurfaces: coherent reconstruction and multiplexing of surface waves[J]. Scientific Reports, 2015, 5: 10529. doi: 10.1038/srep10529

    [10]

    Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    [11]

    Li Xiong, Pu Mingbo, Zhao Zeyu, et al. Catenary nanostructures as compact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524. doi: 10.1038/srep20524

    [12]

    Li Zhongyang, Palacios E, Butun S, et al. Visible-frequency metasurfaces for broadband anomalous reflection and high-efficiency spectrum splitting[J]. Nano Letters, 2015, 15(3): 1615-1621. doi: 10.1021/nl5041572

    [13]

    Guo Yinghui, Pu Mingbo, Zhao Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022-2029. doi: 10.1021/acsphotonics.6b00564

    [14]

    Guo Yinghui, Yan Lianshan, Pan Wei, et al. Generation and manipulation of orbital angular momentum by all-dielectric metasurfaces[J]. Plasmonics, 2016, 11(1): 337-344. doi: 10.1007/s11468-015-0055-7

    [15]

    Guo Yinghui, Yan Lianshan, Pan Wei, et al. Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion[J]. Scientific Reports, 2016, 6: 30154. doi: 10.1038/srep30154

    [16]

    Sun Jingbo, Liu Lingyun, Dong Guoyan, et al. An extremely broad band metamaterial absorber based on destructive interference[J]. Optics Express, 2011, 19(22): 21155-21162. doi: 10.1364/OE.19.021155

    [17]

    Cui Yanxia, Fung K H, Xu Jun, et al. Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab[J]. Nano Letters, 2012, 12(3): 1443-1447. doi: 10.1021/nl204118h

    [18]

    Guo Yinghui, Yan Lianshan, Pan Wei, et al. Ultra-broadband terahertz absorbers based on 4 × 4 cascaded metal-dielectric pairs[J]. Plasmonics, 2014, 9(4): 951-957. doi: 10.1007/s11468-014-9701-8

    [19]

    Chin J Y, Gollub J N, Mock J J, et al. An efficient broadband metamaterial wave retarder[J]. Optics Express, 2009, 17(9): 7640-7647. doi: 10.1364/OE.17.007640

    [20]

    Jen Y J, Lakhtakia A, Yu C W, et al. Biologically inspired achromatic waveplates for visible light[J]. Nature Communications, 2011, 2: 363. doi: 10.1038/ncomms1358

    [21]

    Rozanov K N. Ultimate thickness to bandwidth ratio of radar absorbers[J]. IEEE Transactions on Antennas and Propagation, 2000, 48(8): 1230-1234. doi: 10.1109/8.884491

    [22]

    Lier E, Werner D H, Scarborough C P, et al. An octave-bandwidth negligible-loss radiofrequency metamaterial[J]. Nature Materials, 2011, 10(3): 216-222. doi: 10.1038/nmat2950

    [23]

    Feng Qin, Pu Mingbo, Hu Chenggang, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J]. Optics Letters, 2012, 37(11): 2133-2135. doi: 10.1364/OL.37.002133

    [24]

    Li Yang, Li Xiong, Pu Mingbo, et al. Achromatic flat optical components via compensation between structure and material dispersions[J]. Scientific Reports, 2016, 6: 19885. doi: 10.1038/srep19885

    [25]

    Pu Mingbo, Chen Po, Wang Yanqin, et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation[J]. Applied Physics Letters, 2013, 102(13): 131906. doi: 10.1063/1.4799162

    [26]

    Guo Yinghui, Wang Yanqin, Pu Mingbo, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5: 8434. doi: 10.1038/srep08434

    [27]

    Guo Yinghui, Yan Lianshan, Pan Wei, et al. Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface[J]. Optics Express, 2015, 23(21): 27566-27575. doi: 10.1364/OE.23.027566

    [28]

    Wang Dacheng, Zhang Lingchao, Gu Yinghong, et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface[J]. Scientific Reports, 2015, 5: 15020. doi: 10.1038/srep15020

    [29]

    Wang Dacheng, Zhang Lingchao, Gong Yandong, et al. Multiband switchable terahertz quarter-wave plates via phase-change metasurfaces[J]. IEEE Photonics Journal, 2016, 8(1): 5500308. https://www.researchgate.net/publication/289494973_Multiband_Switchable_Terahertz_Quarter-Wave_Plates_via_Phase-Change_Metasurfaces

    [30]

    Jiang Shangchi, Xiong Xiang, Hu Yuansheng, et al. Controlling the polarization state of light with a dispersion-free metastructure[J]. Physical Review X, 2014, 4(2): 021026. doi: 10.1103/PhysRevX.4.021026

    [31]

    Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304-1307. doi: 10.1126/science.1235399

    [32]

    Zhang Zuojun, Luo Jun, Song Maowen, et al. Large-area, broadband and high-efficiency near-infrared linear polarization manipulating metasurface fabricated by orthogonal interference lithography[J]. Applied Physics Letters, 2015, 107(24): 241904. doi: 10.1063/1.4937006

    [33]

    Isbell D. Log periodic dipole arrays[J]. IRE Transactions on Antennas and Propagation, 1960, 8(3): 260-267. doi: 10.1109/TAP.1960.1144848

    [34]

    Carrel R. The design of log-periodic dipole antennas[C]. Proceedings of IRE International Convention Record, New York, NY, USA, 1961: 61-75.

    [35]

    Shelton P J. Wideband polarization-transforming electromagnetic mirror: US, 4228437[P]. 1980-10-14.

  • 加载中

(7)

计量
  • 文章访问数:  8321
  • PDF下载数:  2152
  • 施引文献:  0
出版历程
收稿日期:  2016-10-12
修回日期:  2016-12-10
刊出日期:  2017-01-20

目录

/

返回文章
返回