Li Xiong, Ma Xiaoliang, Luo Xiangang. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255-275. doi: 10.3969/j.issn.1003-501X.2017.03.001
Citation: Li Xiong, Ma Xiaoliang, Luo Xiangang. Principles and applications of metasurfaces with phase modulation[J]. Opto-Electronic Engineering, 2017, 44(3): 255-275. doi: 10.3969/j.issn.1003-501X.2017.03.001

Principles and applications of metasurfaces with phase modulation

    Fund Project:
More Information
  • Metasurfaces, the equivalent two-dimensional (2D) metamaterials, are thin-film functional devices constructed by subwavelength structures. Abrupt phase changes can be obtained in the planar metasurface structures over the subwavelength scale, which provide a new avenue to enable a variety of applications, including large scale planar imaging, electromagnetic virtual shaping and holographic display with large field of view. The arbitrary modulation abilities of phase, amplitude and polarization at the subwavelength scale, also the light weight, low loss, integratable and conformable design make the metasurfaces very attractive, compared to the traditional optical devices. In this paper, we review the mechanisms of the phase modulation and classify the metasurfaces based on them. The properties and the applications of each type of metasurfaces are also detailedly discussed. The challenges faced by metasurfaces and the areas which need to be further extended are also summarized.
  • 加载中
  • [1] Lee S H. Diffractive and miniaturized optics[M]. San Diego, California: Society of Photo Optical, 1994.

    Google Scholar

    [2] 金国藩, 严瑛白, 邬敏贤, 等.二元光学[M].北京:国防工业出版社, 1998.

    Google Scholar

    [3] 罗先刚.亚波长电磁学[M].北京:科学出版社, 2017.

    Google Scholar

    Luo Xiangang. Sub-wavelength electromagnetics[M]. Beijing: Science Press, 2017.

    Google Scholar

    [4] Shelby R A, Smith D R, Schultz S. Experimental verification of a negative index of refraction[J]. Science, 2001, 292(5514): 77-79. doi: 10.1126/science.1058847

    CrossRef Google Scholar

    [5] Smith D R, Pendry J B, Wiltshire M C K. Metamaterials and negative refractive index[J]. Science, 2004, 305(5685): 788-792. doi: 10.1126/science.1096796

    CrossRef Google Scholar

    [6] 郭迎辉, 蒲明博, 马晓亮, 等.电磁超构材料色散调控研究进展[J].光电工程, 2017, 44(1): 3-22.

    Google Scholar

    Guo Yinghui, Pu Mingbo, Ma Xiaoliang, et al. Advances of dispersion-engineered metamaterials[J]. Opto-Electronic Engineering, 2017, 44(1): 3-22.

    Google Scholar

    [7] Luo Xiangang, Ishihara T. Surface plasmon resonant interference nanolithography technique[J]. Applied Physics Letters, 2004, 84(23): 4780-4782. doi: 10.1063/1.1760221

    CrossRef Google Scholar

    [8] Gao Ping, Yao Na, Wang Changtao, et al. Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens[J]. Applied Physics Letters, 2015, 106(9): 093110. doi: 10.1063/1.4914000

    CrossRef Google Scholar

    [9] Luo Xiangang, Ishihara T. Subwavelength photolithography based on surface-plasmon polariton resonance[J]. Optics Express, 2004, 12(14): 3055-3065. doi: 10.1364/OPEX.12.003055

    CrossRef Google Scholar

    [10] Pendry J B, Schurig D, Smith D R. Controlling electromagnetic fields[J]. Science, 2006, 312(5781): 1780-1782. doi: 10.1126/science.1125907

    CrossRef Google Scholar

    [11] Schurig D, Mock J J, Justice B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. doi: 10.1126/science.1133628

    CrossRef Google Scholar

    [12] Enoch S, Tayeb G, Sabouroux P, et al. A metamaterial for directive emission[J]. Physical Review Letters, 2002, 89(21): 213902. doi: 10.1103/PhysRevLett.89.213902

    CrossRef Google Scholar

    [13] Luo Xiangang, Pu Mingbo, Ma Xiaoliang, et al. Taming the electromagnetic boundaries via metasurfaces: from theory and fabrication to functional devices[J]. International Journal of Antennas and Propagation, 2015, 2015: 204127.

    Google Scholar

    [14] Pu Mingbo, Ma Xiaoliang, Li Xiong, et al. Merging plasmonics and metamaterials by two-dimensional subwavelength structures[J]. Journal of Materials Chemistry C, 2017. DOI: 10.1039/c7tc00440k.

    CrossRef Google Scholar

    [15] Yu Nanfang, Capasso Federico. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150. doi: 10.1038/nmat3839

    CrossRef Google Scholar

    [16] Kildishev A V, Boltasseva A, Shalaev V M. Planar photonics with metasurfaces[J]. Science, 2013, 339(6125): 1232009. doi: 10.1126/science.1232009

    CrossRef Google Scholar

    [17] Kock W E. Metallic delay lenses[J]. Bell System Technical Journal, 1948, 27(1): 58-82. doi: 10.1002/bltj.1948.27.issue-1

    CrossRef Google Scholar

    [18] Berry D, Malech R, Kennedy W. The reflectarray antenna[J]. IEEE Transactions on Antennas and Propagation, 1963, 11(6): 645-651. doi: 10.1109/TAP.1963.1138112

    CrossRef Google Scholar

    [19] Munk B A. Frequency selective surfaces: theory and design[M]. New York: John Wiley & Sons, 2000.

    Google Scholar

    [20] Luo Xiangang. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(9): 594201.

    Google Scholar

    [21] 赵泽宇, 蒲明博, 王彦钦, 等.广义折反射定律[J].光电工程, 2017, 44(2): 129-139.

    Google Scholar

    Zhao Zeyu, Pu Mingbo, Wang Yanqin, et al. The generalized laws of refraction and reflection[J]. Opto-Electronic Engineering, 2017, 44(2): 129-139.

    Google Scholar

    [22] 罗先刚, 徐挺, 杜春雷, 等. 一种包含纳米缝的金属膜透镜: 中国, CN200710177752. 5[P]. 2008-04-09.

    Google Scholar

    Luo Xiangang, Xu Ting, Du Chunlei, et al. Metal membrane lens including Nano seam: China, CN200710177752. 5[P]. 2008-04-09.

    Google Scholar

    [23] Xu Ting, Wang Changtao, Du Chunlei, et al. Plasmonic beam deflector[J]. Optics Express, 2008, 16(7): 4753-4759. doi: 10.1364/OE.16.004753

    CrossRef Google Scholar

    [24] Yu Nanfang, Genevet P, Kats M A, et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction[J]. Science, 2011, 334(6054): 333-337. doi: 10.1126/science.1210713

    CrossRef Google Scholar

    [25] Wang Dacheng, Zhang Lingchao, Gu Yinghong, et al. Switchable ultrathin quarter-wave plate in terahertz using active phase-change metasurface[J]. Scientific Reports, 2015, 5: 15020. doi: 10.1038/srep15020

    CrossRef Google Scholar

    [26] Xu Ting, Du Chunlei, Wang Changtao, et al. Subwavelength imaging by metallic slab lens with nanoslits[J]. Applied Physics Letters, 2007, 91(20): 201501. doi: 10.1063/1.2811711

    CrossRef Google Scholar

    [27] Wang Dacheng, Huang Qin, Qiu Chengwei, et al. Selective excitation of resonances in gammadion metamaterials for terahertz wave manipulation[J]. Science China Physics, Mechanics & Astronomy, 2015, 58(8): 084201.

    Google Scholar

    [28] West P R, Stewart J L, Kildishev A V, et al. All-dielectric subwavelength metasurface focusing lens[J]. Optics Express, 2014, 22(21): 26212-26221. doi: 10.1364/OE.22.026212

    CrossRef Google Scholar

    [29] Lalanne Philippe, Astilean Simion, Chavel Pierre, et al. Blazed binary subwavelength gratings with efficiencies larger than those of conventional xechelette gratings[J]. Optics Letters, 1998, 23(14): 1081-1083. doi: 10.1364/OL.23.001081

    CrossRef Google Scholar

    [30] Shen Yue, Luo Xiangang. Efficient bending and focusing of light beam with all-dielectric subwavelength structures[J]. Optics Communications, 2016, 366: 174-178. doi: 10.1016/j.optcom.2015.12.043

    CrossRef Google Scholar

    [31] Khorasaninejad M, Zhu A Y, Roques-Carmes C, et al. Polarization-insensitive metalenses at visible wavelengths[J]. Nano Letters, 2016, 16(11): 7229-7234. doi: 10.1021/acs.nanolett.6b03626

    CrossRef Google Scholar

    [32] Li Yang, Li Xiong, Pu Mingbo, et al. Achromatic flat optical components via compensation between structure and material dispersions[J]. Scientific Reports, 2016, 6: 19885. doi: 10.1038/srep19885

    CrossRef Google Scholar

    [33] Verslegers L, Catrysse P B, Yu Zongfu, et al. Planar metallic nanoscale slit lenses for angle compensation[J]. Applied Physics Letters, 2009, 95(7): 071112. doi: 10.1063/1.3211875

    CrossRef Google Scholar

    [34] Ishii S, Shalaev V M, Kildishev A V. Holey-metal lenses: sieving single modes with proper phases[J]. Nano Letters, 2013, 13(1): 159-163. doi: 10.1021/nl303841n

    CrossRef Google Scholar

    [35] Lin Ling, Goh X M, McGuinness L P, et al. Plasmonic lenses formed by two-dimensional nanometric cross-shaped aperture arrays for fresnel-region focusing[J]. Nano Letters, 2010, 10(5): 1936-1940. doi: 10.1021/nl1009712

    CrossRef Google Scholar

    [36] Verslegers L, Catrysse P B, Yu Zongfu, et al. Planar lenses based on nanoscale slit arrays in a metallic film[J]. Nano Letters, 2009, 9(1): 235-238. doi: 10.1021/nl802830y

    CrossRef Google Scholar

    [37] Goh X M, Lin L, Roberts A. Planar focusing elements using spatially varying near-resonant aperture arrays[J]. Optics Express, 2010, 18(11): 11683-11688. doi: 10.1364/OE.18.011683

    CrossRef Google Scholar

    [38] Xu Ting, Fang Liang, Zeng Beibei, et al. Subwavelength nanolithography based on unidirectional excitation of surface plasmons[J]. Journal of Optics A: Pure and Applied Optics, 2009, 11(8): 085003. doi: 10.1088/1464-4258/11/8/085003

    CrossRef Google Scholar

    [39] Xu Ting, Zhao Yanhui, Gan Dachun, et al. Directional excitation of surface plasmons with subwavelength slits[J]. Applied Physics Letters, 2008, 92(10): 101501. doi: 10.1063/1.2894183

    CrossRef Google Scholar

    [40] Sun Jingbo, Wang Xi, Xu Tianboyu, et al. Spinning light on the nanoscale[J]. Nano Letters, 2014, 14(5): 2726-2729. doi: 10.1021/nl500658n

    CrossRef Google Scholar

    [41] Xu Ting, Wu Y K, Luo Xiangang, et al. Plasmonic nanoresonators for high-resolution colour filtering and spectral imaging[J]. Nature Communications, 2010, 1: 59.

    Google Scholar

    [42] Gu Yinghong, Zhang Lei, Yang J K W, et al. Color generation via subwavelength plasmonic nanostructures[J]. Nanoscale, 2015, 7(15): 6409-6419. doi: 10.1039/C5NR00578G

    CrossRef Google Scholar

    [43] Dionne J A, Baldi A, Baum B, et al. Localized fields, global impact: Industrial applications of resonant plasmonic materials[J]. MRS Bulletin, 2015, 40(12): 1138-1145. doi: 10.1557/mrs.2015.233

    CrossRef Google Scholar

    [44] Li Xiong, Yang Lanying, Hu Chenggang, et al. Tunable bandwidth of band-stop filter by metamaterial cell coupling in optical frequency[J]. Optics Express, 2011, 19(6): 5283-5289. doi: 10.1364/OE.19.005283

    CrossRef Google Scholar

    [45] Aieta F, Kats M A, Genevet P, et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation[J]. Science, 2015, 347(6228): 1342-1345. doi: 10.1126/science.aaa2494

    CrossRef Google Scholar

    [46] Pu Mingbo, Chen Po, Wang Changtao, et al. Broadband anomalous reflection based on gradient low-Q meta-surface[J]. AIP Advances, 2013, 3(5): 052136. doi: 10.1063/1.4809548

    CrossRef Google Scholar

    [47] Pu Mingbo, Chen Po, Wang Yanqin, et al. Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation[J]. Applied Physics Letters, 2013, 102(13): 131906. doi: 10.1063/1.4799162

    CrossRef Google Scholar

    [48] Pfeiffer C, Grbic A. Metamaterial Huygens' surfaces: tailoring wave fronts with reflectionless sheets[J]. Physical Review Letters, 2013, 110(19): 197401. doi: 10.1103/PhysRevLett.110.197401

    CrossRef Google Scholar

    [49] Pfeiffer C, Grbic A. Millimeter-wave transmitarrays for wavefront and polarization control[J]. IEEE Transactions on Microwave Theory and Techniques, 2013, 61(12): 4407-4417. doi: 10.1109/TMTT.2013.2287173

    CrossRef Google Scholar

    [50] Pfeiffer C, Emani N K, Shaltout A M, et al. Efficient light bending with isotropic metamaterial Huygens' surfaces[J]. Nano Letters, 2014, 14(5): 2491-2497. doi: 10.1021/nl5001746

    CrossRef Google Scholar

    [51] Sun Shulin, Yang Kuangyu, Wang C M, et al. High-efficiency broadband anomalous reflection by gradient meta-surfaces[J]. Nano Letters, 2012, 12(12): 6223-6229. doi: 10.1021/nl3032668

    CrossRef Google Scholar

    [52] Pors A, Albrektsen O, Radko I P, et al. Gap plasmon-based metasurfaces for total control of reflected light[J]. Scientific Reports, 2013, 3: 2155. doi: 10.1038/srep02155

    CrossRef Google Scholar

    [53] Pors A, Bozhevolnyi S I. Plasmonic metasurfaces for efficient phase control in reflection[J]. Optics Express, 2013, 21(22): 27438-27451. doi: 10.1364/OE.21.027438

    CrossRef Google Scholar

    [54] Feng Qin, Pu Mingbo, Hu Chenggang, et al. Engineering the dispersion of metamaterial surface for broadband infrared absorption[J]. Optics Letters, 2012, 37(11): 2133-2135. doi: 10.1364/OL.37.002133

    CrossRef Google Scholar

    [55] Pu Mingbo, Hu Chenggang, Wang Min, et al. Design principles for infrared wide-angle perfect absorber based on plasmonic structure[J]. Optics Express, 2011, 19(18): 17413-17420. doi: 10.1364/OE.19.017413

    CrossRef Google Scholar

    [56] Guo Yinghui, Wang Yanqin, Pu Mingbo, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5: 8434. doi: 10.1038/srep08434

    CrossRef Google Scholar

    [57] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Achromatic polarization manipulation by dispersion management of anisotropic meta-mirror with dual-metasurface[J]. Optics Express, 2015, 23(21): 27566-27575. doi: 10.1364/OE.23.027566

    CrossRef Google Scholar

    [58] Sun Shulin, He Qiong, Xiao Shiyi, et al. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves[J]. Nature Materials, 2012, 11(5): 426-431. doi: 10.1038/nmat3292

    CrossRef Google Scholar

    [59] Li Xin, Xiao Shiyi, Cai Bengeng, et al. Flat metasurfaces to focus electromagnetic waves in reflection geometry[J]. Optics Letters, 2012, 37(23): 4940-4942. doi: 10.1364/OL.37.004940

    CrossRef Google Scholar

    [60] Chen Weiting, Yang Kuangyu, Wang C M, et al. High-efficiency broadband meta-hologram with polarization-controlled dual images[J]. Nano Letters, 2014, 14(1): 225-230. doi: 10.1021/nl403811d

    CrossRef Google Scholar

    [61] Yifat Y, Eitan M, Iluz Z, et al. Highly efficient and broadband wide-angle holography using patch-dipole nanoantenna reflectarrays[J]. Nano Letters, 2014, 14(5): 2485-2490. doi: 10.1021/nl5001696

    CrossRef Google Scholar

    [62] Grady N K, Heyes J E, Chowdhury D R, et al. Terahertz metamaterials for linear polarization conversion and anomalous refraction[J]. Science, 2013, 340(6138): 1304-1307. doi: 10.1126/science.1235399

    CrossRef Google Scholar

    [63] Berry M V. Quantal phase factors accompanying adiabatic changes[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1984, 392(1802): 45-57. doi: 10.1098/rspa.1984.0023

    CrossRef Google Scholar

    [64] Sichak W, Levine D J. Microwave high-speed continuous phase shifter[J]. Proceedings of the IRE, 1955, 43(11): 1661-1663. doi: 10.1109/JRPROC.1955.277993

    CrossRef Google Scholar

    [65] Pancharatnam S. Generalized theory of interference, and its applications[J]. Proceedings of the Indian Academy of Sciences-Section A, 1956, 44(5): 247-262.

    Google Scholar

    [66] Pu Mingbo, Li Xiong, Ma Xiaoliang, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396

    CrossRef Google Scholar

    [67] Huang Lingling, Chen Xianzhong, Mühlenbernd H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11): 5750-5755. doi: 10.1021/nl303031j

    CrossRef Google Scholar

    [68] Chen Xianzhong, Huang Lingling, Mühlenbernd H, et al. Reversible three-dimensional focusing of visible light with ultrathin plasmonic flat lens[J]. Advanced Optical Materials, 2013, 1(7): 517-521. doi: 10.1002/adom.v1.7

    CrossRef Google Scholar

    [69] Chen Xianzhong, Chen Ming, Mehmood M Q, et al. Longitudinal multifoci metalens for circularly polarized light[J]. Advanced Optical Materials, 2015, 3(9): 1201-1206. doi: 10.1002/adom.v3.9

    CrossRef Google Scholar

    [70] Zhao Zeyu, Pu Mingbo, Gao Hui, et al. Multispectral optical metasurfaces enabled by achromatic phase transition[J]. Scientific Reports, 2015, 5: 15781. doi: 10.1038/srep15781

    CrossRef Google Scholar

    [71] Chen Xianzhong, Huang Lingling, Mühlenbernd H, et al. Dual-polarity plasmonic metalens for visible light[J]. Nature Communications, 2012, 3: 1198. doi: 10.1038/ncomms2207

    CrossRef Google Scholar

    [72] Huang Lingling, Chen Xianzhong, Bai Benfeng, et al. Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity[J]. Light: Science & Applications, 2013, 2(3): e70.

    Google Scholar

    [73] Lin Jiao, Mueller J P B, Wang Qian, et al. Polarization-controlled tunable directional coupling of surface plasmon polaritons[J]. Science, 2013, 340(6130): 331-334. doi: 10.1126/science.1233746

    CrossRef Google Scholar

    [74] Tang Dongliang, Wang Changtao, Zhao Zeyu, et al. Ultrabroadband superoscillatory lens composed by plasmonic metasurfaces for subdiffraction light focusing[J]. Laser & Photonics Reviews, 2015, 9(6): 713-719.

    Google Scholar

    [75] Jin Jinjin, Luo Jun, Zhang Xiaohu, et al. Generation and detection of orbital angular momentum via metasurface[J]. Scientific Reports, 2016, 6: 24286. doi: 10.1038/srep24286

    CrossRef Google Scholar

    [76] Yang Kunpeng, Pu Mingbo, Li Xiong, et al. Wavelength-selective orbital angular momentum generation based on a plasmonic metasurface[J]. Nanoscale, 2016, 8(24): 12267-12271. doi: 10.1039/C5NR09209D

    CrossRef Google Scholar

    [77] Ma Xiaoliang, Pu Mingbo, Li Xiong, et al. A planar chiral meta-surface for optical vortex generation and focusing[J]. Scientific Reports, 2015, 5: 10365. doi: 10.1038/srep10365

    CrossRef Google Scholar

    [78] Brasselet Etienne, Gervinskas Gediminas, Seniutinas Gediminas, et al. Topological Shaping of Light by Closed-Path Nanoslits[J]. Physical Review Letters, 2013, 111(19): 193901. doi: 10.1103/PhysRevLett.111.193901

    CrossRef Google Scholar

    [79] Li Yang, Li Xiong, Chen Lianwei, et al. Orbital angular momentum multiplexing and demultiplexing by a single metasurface[J]. Advanced Optical Materials, 2017, 5(2): 1600502. doi: 10.1002/adom.201600502.

    CrossRef Google Scholar

    [80] Ren Haoran, Li Xiangping, Zhang Qiming, et al. On-chip noninterference angular momentum multiplexing of broadband light[J]. Science, 2016, 352(6287): 805-809. doi: 10.1126/science.aaf1112

    CrossRef Google Scholar

    [81] Li Xiong, Chen Lianwei, Li Yang, et al. Multicolor 3D meta-holography by broadband plasmonic modulation[J]. Science Advances, 2016, 2(11): e1601102. doi: 10.1126/sciadv.1601102

    CrossRef Google Scholar

    [82] Zhang Xiaohu, Jin Jinjin, Pu Mingbo, et al. Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes[J]. Nanoscale, 2017, 9(4): 1409-1415. doi: 10.1039/C6NR07854K

    CrossRef Google Scholar

    [83] Huang Lingling, Mühlenbernd Holger, Li Xiaowei, et al. Broadband hybrid holographic multiplexing with geometric metasurfaces[J]. Advanced Materials, 2015, 27(41): 6444-6449. doi: 10.1002/adma.201502541

    CrossRef Google Scholar

    [84] Huang Lingling, Chen Xianzhong, Mühlenbernd Holger, et al. Three-dimensional optical holography using a plasmonic metasurface[J]. Nature Communications, 2013, 4: 2808.

    Google Scholar

    [85] Wen Dandan, Yue Fuyong, Li Guixin, et al. Helicity multiplexed broadband metasurface holograms[J]. Nature Communications, 2015, 6: 8241. doi: 10.1038/ncomms9241

    CrossRef Google Scholar

    [86] Zhang Xiaohu, Jin Jinjin, Wang Yanqin, et al. Metasurface- based broadband hologram with high tolerance to fabrication errors[J]. Scientific Reports, 2016, 6: 19856. doi: 10.1038/srep19856

    CrossRef Google Scholar

    [87] Huang Yaowei, Chen Weiting, Tsai W Y, et al. Aluminum plasmonic multicolor meta-hologram[J]. Nano Letters, 2015, 15(5): 3122-3127. doi: 10.1021/acs.nanolett.5b00184

    CrossRef Google Scholar

    [88] Montelongo Y, Tenorio-Pearl J O, Williams C, et al. Plasmonic nanoparticle scattering for color holograms[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12679-12683. doi: 10.1073/pnas.1405262111

    CrossRef Google Scholar

    [89] Ozaki M, Kato J I, Kawata S. Surface-plasmon holography with white-light illumination[J]. Science, 2011, 332(6026): 218-220. doi: 10.1126/science.1201045

    CrossRef Google Scholar

    [90] Luo Xiangang, Pu Mingbo, Li Xiong, et al. Broadband spin Hall effect of light in single nanoapertures[J]. Light: Science & Applications, 2017, 6: e16276.

    Google Scholar

    [91] Heyman J. Hooke's cubico-parabolical conoid[J]. Notes and Records of the Royal Society, 1998, 52(1): 39-50. doi: 10.1098/rsnr.1998.0033

    CrossRef Google Scholar

    [92] Wang Yanqin, Pu Mingbo, Zhang Zuojun, et al. Quasi-continuous metasurface for ultra-broadband and polarization-controlled electromagnetic beam deflection[J]. Scientific Reports, 2015, 5: 17733.

    Google Scholar

    [93] Guo Yinghui, Yan Lianshan, Pan Wei, et al. Scattering engineering in continuously shaped metasurface: an approach for electromagnetic illusion[J]. Scientific Reports, 2016, 6: 30154. doi: 10.1038/srep30154

    CrossRef Google Scholar

    [94] Li Xiong, Pu Mingbo, Wang Yanqin, et al. Dynamic control of the extraordinary optical scattering in semicontinuous 2D metamaterials[J]. Advanced Optical Materials, 2016, 4(5): 659-663. doi: 10.1002/adom.v4.5

    CrossRef Google Scholar

    [95] Li Xiong, Pu Mingbo, Zhao Zeyu, et al. Catenary nanostructures as compact Bessel beam generators[J]. Scientific Reports, 2016, 6: 20524. doi: 10.1038/srep20524

    CrossRef Google Scholar

    [96] Sun Hongbo. The mystical interlinks: mechanics, religion or optics?[J]. Science China Physics, Mechanics & Astronomy, 2016, 59(1): 614202.

    Google Scholar

    [97] Hong Minghui. Metasurface wave in planar Nano-photonics[J]. Science Bulletin, 2016, 61(2): 112-113. doi: 10.1007/s11434-015-0948-z

    CrossRef Google Scholar

    [98] Monticone F, Estakhri N M, Alù A. Full control of nanoscale optical transmission with a composite metascreen[J]. Physical Review Letters, 2013, 110(20): 203903. doi: 10.1103/PhysRevLett.110.203903

    CrossRef Google Scholar

    [99] Kang Ming, Feng Tianhua, Wang Huitian, et al. Wave front engineering from an array of thin aperture antennas[J]. Optics Express, 2012, 20(14): 15882-15890. doi: 10.1364/OE.20.015882

    CrossRef Google Scholar

    [100] Ding Xumin, Monticone F, Zhang Kuang, et al. Ultrathin pancharatnam-berry metasurface with maximal cross-polari-zation efficiency[J]. Advanced Materials, 2015, 27(7): 1195- 1200. doi: 10.1002/adma.201405047

    CrossRef Google Scholar

    [101] Pu Mingbo, Zhao Zeyu, Wang Yanqin, et al. Spatially and spectrally engineered spin-orbit interaction for achromatic virtual shaping[J]. Scientific Reports, 2015, 5: 9822. doi: 10.1038/srep09822

    CrossRef Google Scholar

    [102] Zheng Guoxing, Mühlenbernd H, Kenney M, et al. Metasurface holograms reaching 80% efficiency[J]. Nature Nanotechnology, 2015, 10(4): 308-312. doi: 10.1038/nnano.2015.2

    CrossRef Google Scholar

    [103] Maguid E, Yulevich I, Veksler D, et al. Photonic spin-controlled multifunctional shared-aperture antenna array[J]. Science, 2016, 352(6290): 1202-1206. doi: 10.1126/science.aaf3417

    CrossRef Google Scholar

    [104] Ni Xingjie, Wong Z J, Mrejen M, et al. An ultrathin invisibility skin cloak for visible light[J]. Science, 2015, 349(6254): 1310-1314. doi: 10.1126/science.aac9411

    CrossRef Google Scholar

    [105] Bomzon Z, Biener G, Kleiner V, et al. Radially and azimuthally polarized beams generated by space-variant dielectric subwavelength gratings[J]. Optics Letters, 2002, 27(5): 285-287. doi: 10.1364/OL.27.000285

    CrossRef Google Scholar

    [106] Bomzon Z, Biener G, Kleiner V, et al. Space-variant Pancharatnam-berry phase optical elements with computer-generated subwavelength gratings[J]. Optics Letters, 2002, 27(13): 1141-1143. doi: 10.1364/OL.27.001141

    CrossRef Google Scholar

    [107] Levy U, Kim H C, Tsai C H, et al. Near-infrared demonstration of computer-generated holograms implemented by using subwavelength gratings with space-variant orientation[J]. Optics Letters, 2005, 30(16): 2089-2091. doi: 10.1364/OL.30.002089

    CrossRef Google Scholar

    [108] Khorasaninejad M, Chen Weiting, Devlin R C, et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging[J]. Science, 2016, 352(6290): 1190-1194. doi: 10.1126/science.aaf6644

    CrossRef Google Scholar

    [109] Lin Dianmin, Fan Pengyu, Hasman E, et al. Dielectric gradient metasurface optical elements[J]. Science, 2014, 345(6194): 298-302. doi: 10.1126/science.1253213

    CrossRef Google Scholar

    [110] Hasman E, Kleiner V, Biener G, et al. Polarization dependent focusing lens by use of quantized Pancharatnam-berry phase diffractive optics[J]. Applied Physics Letters, 2003, 82(3): 328-330. doi: 10.1063/1.1539300

    CrossRef Google Scholar

    [111] Arbabi A, Horie Y, Bagheri M, et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission[J]. Nature Nanotechnology, 2015, 10(11): 937-943. doi: 10.1038/nnano.2015.186

    CrossRef Google Scholar

    [112] Deng Yongbo, Liu Zhenyu, Liu Yongmin, et al. Inverse design of dielectric resonator cloaking based on topology optimization[J]. Plasmonics, 2016. doi: 10.1007/s11468-016-0438-4.

    CrossRef Google Scholar

    [113] Ni Xingjie, Emani N K, Kildishev A V, et al. Broadband light bending with plasmonic nanoantennas[J]. Science, 2012, 335(6067): 427. doi: 10.1126/science.1214686

    CrossRef Google Scholar

    [114] Jiao Jiao, Li Xiong, Huang Xiaoping, et al. Improvement of focusing efficiency of plasmonic planar lens by oil immersion[J]. Plasmonics, 2015, 10(3): 539-545. doi: 10.1007/s11468-014-9838-5

    CrossRef Google Scholar

    [115] Yin Xiaobo, Ye Ziliang, Rho J, et al. Photonic spin hall effect at metasurfaces[J]. Science, 2013, 339(6126): 1405-1407. doi: 10.1126/science.1231758

    CrossRef Google Scholar

    [116] Lin Jing, Wu Shibin, Li Xiong, et al. Design and numerical analyses of ultrathin plasmonic lens for subwavelength focusing by phase discontinuities of nanoantenna arrays[J]. Applied Physics Express, 2013, 6(2): 022004. doi: 10.7567/APEX.6.022004

    CrossRef Google Scholar

    [117] Genevet P, Yu Nanfang, Aieta F, et al. Ultra-thin plasmonic optical vortex plate based on phase discontinuities[J]. Applied Physics Letters, 2012, 100(1): 013101. doi: 10.1063/1.3673334

    CrossRef Google Scholar

    [118] Aieta F, Genevet P, Yu Nanfang, et al. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities[J]. Nano Letters, 2012, 12(3): 1702-1706. doi: 10.1021/nl300204s

    CrossRef Google Scholar

    [119] Ni Xingjie, Ishii S, Kildishev A V, et al. Ultra-thin, planar, Babinet-inverted plasmonic metalenses[J]. Light: Science & Applications, 2013, 2(4): e72.

    Google Scholar

    [120] Hu Dan, Wang Xinke, Feng Shengfei, et al. Ultrathin terahertz planar elements[J]. Advanced Optical Materials, 2013, 1(2): 186-191. doi: 10.1002/adom.201200044

    CrossRef Google Scholar

    [121] Qin Fei, Ding Lu, Zhang Lei, et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light[J]. Science Advances, 2016, 2(1): e1501168. doi: 10.1126/sciadv.1501168

    CrossRef Google Scholar

    [122] Wang Qiu, Zhang Xueqian, Xu Yuehong, et al. A broadband metasurface-based terahertz flat-lens array[J]. Advanced Optical Materials, 2015, 3(6): 779-785. doi: 10.1002/adom.v3.6

    CrossRef Google Scholar

    [123] Zhang Xueqian, Tian Zhen, Yue Weisheng, et al. Broadband terahertz wave deflection based on C-shape complex metamaterials with phase discontinuities[J]. Advanced Materials, 2013, 25(33): 4567-4572. doi: 10.1002/adma.201204850

    CrossRef Google Scholar

    [124] Mueller J P B, Rubin N A, Devlin R C, et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization[J]. Physical Review Letters, 2017, 118(11): 113901. doi: 10.1103/PhysRevLett.118.113901

    CrossRef Google Scholar

    [125] Guo Yinghui, Pu Mingbo, Zhao Zeyu, et al. Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation[J]. ACS Photonics, 2016, 3(11): 2022-2029. doi: 10.1021/acsphotonics.6b00564

    CrossRef Google Scholar

    [126] Ni Xingjie, Kildishev A V, Shalaev V M. Metasurface holograms for visible light[J]. Nature Communications, 2013, 4: 2807.

    Google Scholar

    [127] Liu Lixiang, Zhang Xueqian, Kenney M, et al. Broadband metasurfaces with simultaneous control of phase and amplitude[J]. Advanced Materials, 2014, 26(29): 5031-5036. doi: 10.1002/adma.201401484

    CrossRef Google Scholar

    [128] Jin Jinjin, Pu Mingbo, Wang Yanqin, et al. Multi-channel vortex beam generation by simultaneous amplitude and phase modulation with two-dimensional metamaterial[J]. Advanced Materials Technologies, 2017, 2(2): 1600201. doi: 10.1002/admt.201600201

    CrossRef Google Scholar

    [129] Lee J, Tymchenko M, Argyropoulos C, et al. Giant nonlinear response from plasmonic metasurfaces coupled to intersubband transitions[J]. Nature, 2014, 511(7507): 65-69. doi: 10.1038/nature13455

    CrossRef Google Scholar

    [130] Almeida E, Shalem G, Prior Y. Subwavelength nonlinear phase control and anomalous phase matching in plasmonic metasurfaces[J]. Nature Communications, 2016, 7: 10367. doi: 10.1038/ncomms10367

    CrossRef Google Scholar

    [131] Ye Weimin, Zeuner F, Li Xin, et al. Spin and wavelength multiplexed nonlinear metasurface holography[J]. Nature Communications, 2016, 7: 11930. doi: 10.1038/ncomms11930

    CrossRef Google Scholar

    [132] Ma Xiaoliang, Pan Wenbo, Huang Cheng, et al. An active metamaterial for polarization manipulating[J]. Advanced Optical Materials, 2014, 2(10): 945-949. doi: 10.1002/adom.v2.10

    CrossRef Google Scholar

    [133] Luo Jun, Zeng Bo, Wang Changtao, et al. Fabrication of anisotropically arrayed Nano-slots metasurfaces using reflective plasmonic lithography[J]. Nanoscale, 2015, 7(44): 18805- 18812. doi: 10.1039/C5NR05153C

    CrossRef Google Scholar

    [134] Luo Xiangang, Yan Lianshan. Surface plasmon polaritons and its applications[J]. IEEE Photonics Journal, 2012, 4(2): 590- 595. doi: 10.1109/JPHOT.2012.2189436

    CrossRef Google Scholar

    [135] Lin Dianmin, Tao Hu, Trevino J, et al. Direct transfer of subwavelength plasmonic nanostructures on bioactive silk films[J]. Advanced Materials, 2012, 24(45): 6088-6093. doi: 10.1002/adma.v24.45

    CrossRef Google Scholar

    [136] Khorasaninejad M, Shi Z, Zhu A Y, et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion[J]. Nano Letters, 2017, 17(3): 1819-1824. doi: 10.1021/acs.nanolett.6b05137

    CrossRef Google Scholar

    [137] Ee H S, Agarwal R. Tunable metasurface and flat optical zoom lens on a stretchable substrate[J]. Nano Letters, 2016, 16(4): 2818-2823. doi: 10.1021/acs.nanolett.6b00618

    CrossRef Google Scholar

    [138] Li Xiong, Feng Qin, Luo Xiangang, et al. Frequency Controllable Metamaterial Absorber by an Added Dielectric Layer[C]//. AIP conference proceedings, Malaysia, 2011, 1328: 318-320.

    Google Scholar

    [139] Chen Yiguo, Li Xiong, Luo Xiangang, et al. Tunable near- infrared plasmonic perfect absorber based on phase-change materials[J]. Photonics Research, 2015, 3(3): 54-57. doi: 10.1364/PRJ.3.000054

    CrossRef Google Scholar

    [140] Chen Y G, Kao T S, Ng B, et al. Hybrid phase-change plasmonic crystals for active tuning of lattice resonances[J]. Optics Express, 2013, 21(11): 13691-13698. doi: 10.1364/OE.21.013691

    CrossRef Google Scholar

    [141] Kats M A, Sharma D, Lin Jiao, et al. Ultra-thin perfect absorber employing a tunable phase change material[J]. Applied Physics Letters, 2012, 101(22): 221101. doi: 10.1063/1.4767646

    CrossRef Google Scholar

    [142] Yao Yu, Shankar R, Kats M A, et al. Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators[J]. Nano Letters, 2014, 14(11): 6526-6532. doi: 10.1021/nl503104n

    CrossRef Google Scholar

    [143] Chen H T, Padilla W J, Zide J M O, et al. Active terahertz metamaterial devices[J]. Nature, 2006, 444(7119): 597-600. doi: 10.1038/nature05343

    CrossRef Google Scholar

    [144] Chen H T, Padilla W J, Cich M J, et al. A metamaterial solid-state terahertz phase modulator[J]. Nature Photonics, 2009, 3(3): 148-151. doi: 10.1038/nphoton.2009.3

    CrossRef Google Scholar

    [145] Shen Nianhai, Massaouti M, Gokkavas M, et al. Optically implemented broadband blueshift switch in the terahertz regime[J]. Physical Review Letters, 2011, 106(3): 037403. doi: 10.1103/PhysRevLett.106.037403

    CrossRef Google Scholar

    [146] Large N, Abb M, Aizpurua J, et al. Photoconductively loaded plasmonic nanoantenna as building block for ultracompact optical switches[J]. Nano Letters, 2010, 10(5): 1741-1746. doi: 10.1021/nl1001636

    CrossRef Google Scholar

    [147] Tsakmakidis K L, Wartak M S, Cook J J H, et al. Negative-permeability electromagnetically induced transparent and magnetically active metamaterials[J]. Physical Review B, 2010, 81(19): 195128. doi: 10.1103/PhysRevB.81.195128

    CrossRef Google Scholar

    [148] Temnov V V, Armelles G, Woggon U, et al. Active magneto-plasmonics in hybrid metal-ferromagnet structures[J]. Nature Photonics, 2010, 4(2): 107-111. doi: 10.1038/nphoton.2009.265

    CrossRef Google Scholar

  • Abstract:Conventional refractive optical components such as lenses and prism modifying the wavefronts rely on light propagation over distances much larger than the wavelength, which makes them bulky and weighty. To address this issue, binary optics was proposed in the end of 1980s. Secondary waves created by binary optical components such as holograms diffract in free space and interfere in the far-field to form complex optical patterns. The phase of the secondary waves is modulated through propagation delay in a discrete and planar way. However, the chromatism in diffraction and the limited field of view due to the relatively large scale of phase modulation, limit the applications of the binary optical components. Recently, a type of flat, ultrathin optical components called ‘metasurfaces’ was proposed. Metasurfaces, seen as the two-dimensional equivalents of metamaterials, are thin-film functional devices constructed by subwavelength structures. Benefiting from their simplified fabrication process of planar profiles and low electromagnetic energy loss compared to metamaterials, metasurfaces are promising for integration with on-chip nanophotonic devices. Abrupt phase changes can be obtained in the planar metasurface structures over the scale of the wavelength, which provide a new avenue to enable a variety of applications including large scale planar imaging, electromagnetic virtual shaping and holographic display in larger field of view. The arbitrary modulation abilities of phase, amplitude and polarization at the subwavelength scale, also the integratable and conformable design make the metasurfaces very attractive. The devices based on metasurface can be designed to possess many required properties replacing bulky optical components. In this paper, we give a brief introduction of the development of the metasurface in an historical perspective. We focus on recent developments of the flat, ultrathin optical and electromagnetic components based on metasurfaces. The physical mechanism of the phase modulation in metasurfaces is analyzed and classified. These types of phase modulation in metasurface, i.e., transmission phase modulation, circuit-type phase modulation, and geometric (or Pancharatnam- Berry) phase modulation, are comprehensively introduced. The unique properties and the applications of each type of metasurface are detailedly discussed. We also review some newly designed novel metasurfaces which make use of merging phase modulation. Furthermore, the magnitude modulation, and the polarization modulation accompanied in the phase modulation of metasurfaces are introduced. At last, we summarize the challenges faced by metasurfaces with an eye toward the promising future directions in this field.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(24)

Article Metrics

Article views(42703) PDF downloads(23607) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint