双发光层结构和双金属电极的绿光微腔OLED

安涛, 吴俊宇, 李朋, 等. 双发光层结构和双金属电极的绿光微腔OLED[J]. 光电工程, 2017, 44(3): 356-361. doi: 10.3969/j.issn.1003-501X.2017.03.012
引用本文: 安涛, 吴俊宇, 李朋, 等. 双发光层结构和双金属电极的绿光微腔OLED[J]. 光电工程, 2017, 44(3): 356-361. doi: 10.3969/j.issn.1003-501X.2017.03.012
Tao An, Junyu Wu, Peng Li, et al. Green OLED based on double metallic mirrors in microcavity structures and double light-emitting structure[J]. Opto-Electronic Engineering, 2017, 44(3): 356-361. doi: 10.3969/j.issn.1003-501X.2017.03.012
Citation: Tao An, Junyu Wu, Peng Li, et al. Green OLED based on double metallic mirrors in microcavity structures and double light-emitting structure[J]. Opto-Electronic Engineering, 2017, 44(3): 356-361. doi: 10.3969/j.issn.1003-501X.2017.03.012

双发光层结构和双金属电极的绿光微腔OLED

  • 基金项目:
    国家自然科学基金(61106043)资助项目
详细信息

Green OLED based on double metallic mirrors in microcavity structures and double light-emitting structure

  • Fund Project:
More Information
  • 制备双金属电极的绿光微腔器件,其结构为Al(15 nm)/MoO3(4 nm)/2T-NATA(10 nm)/NPB(15 nm)/NPB: C545T(x%, 20 nm)/Alq3:C545T(4%, 20 nm)/Bphen(35 nm)/LiF(1 nm)/Al(200 nm),其中x为掺杂浓度。实验表明:当掺杂浓度为3%时,器件有最好的光电性能,记为器件B1。为分析微腔效应,制备基于ITO的参考器件B2。B1和B2色坐标分别为(0.289, 0.620)和(0.317, 0.557),所以微腔器件的发光颜色更绿。在100 mA/cm2时,器件B1和B2的亮度分别为5076 cd/m2和4818 cd/m2,且最大亮度为9277.7 cd/m2,10440 cd/m2;在100 mA/cm2时,器件B1和B2的发光效率为6.0 cd/A和5.61 cd/A,且最大发光效率分别为8.6 cd/A和7.97 cd/A。与参考器件相比,绿光微腔器件具有更好的发光效率和颜色纯度,其主要归因于微腔效应。

  • Abstract:Organic light emitting devices (OLEDs) have some performances, such as low power consumption, ultra-light, fast response speed, high-definition, self-luminous and viewing angle, etc, which are expected to become a mainstream of the next generation of display devices. It is found that the microcavity structure can narrow the luminescence spectrum of the thin film and improve the luminescence color purity of the device effectively. We prepared a light-emitting device by using high vacuum deposition process and high-precision film thickness detector. This paper designed and prepared the green OLED devices based on double metallic mirrors in microcavity structures, of which the process was by vacuum evaporation and double metallic mirrors of devices: Al/MO3 as device of anode and hole injection layer, and LiF/Al as device cathode and electron injection layers. Organic material C545T was as green microcavity device of light-emitting materials. The device structure is Al(20 nm)/MoO3(4 nm)/2T-NATA(10 nm)/NPB(15 nm)/NPB:C545T(x%, 20 nm)/Alq3: C545T (4%, 20 nm)/Bphen (35 nm)/LiF(1 nm)/Al(200 nm), where x is the doping concentration, denoted as device B1. In order to analyze the microcavity effect, another preparation was made based on the ITO reference device B2. The microcavity effect of the device was analyzed by comparing the device's luminous brightness, luminous efficiency and luminescent color purity. The experimental results show that the device has the best optical and electrical properties when the doping concentration of device B1 is 3%. We found B1 and B2 color coordinates, (0.289, 0.620) and (0.317, 0.557), respectively. It can be judged that the luminescent color of the microcavity device B1 is purer. Then, microcavity device for microcavity effects could improve forward direction luminance intensity and luminance efficiency. At 100 mA/cm2, the brightness of devices B1 and B2 are 5076 cd/m2and 4818 cd/m2, and the maximum brightness of the both devices are 9277.7 cd/m2 and 10440 cd/m2. At 100 mA/cm2, luminance efficiencies of devices B1 and B2 are 6.0 cd/A and 5.61 cd/A, and the maximum luminance efficiencies of the both devices were 8.6 cd/A and 7.97 cd/A. We can conclude that, compared with the reference device, the green microcavity device has better luminous efficiency and color purity than the reference device under the effect of the microcavity, and the photoelectric performance of the device is best when the C545T doping concentration is 3% and the thickness is 20 nm.

  • 加载中
  • 图 1  绿光微腔OLED结构.

    Figure 1.  Green microcavity OLED structures.

    图 2  基于双发光层的绿光器件能级图.

    Figure 2.  Energy level diagram of green device based on double EL layer.

    图 3  不同C545T掺杂浓度器件的光电性能.

    Figure 3.  Optical and electrical properties of different C545T doping devices.

    图 4  器件B1和B2对比.

    Figure 4.  Comparison of B1 and B2.

    图 5  器件B1和B2性能对比.

    Figure 5.  Performance comparison of B1 and B2.

  • [1]

    高强, 尹勇明, 于晶, 等.基于双极传输母体的高效有机磷光发光器件[J].发光学报, 2014, 35(6): 717‒721. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201406015

    Gao Qiang, Yin Yongming, Yu Jing, et al. High-efficiency phosphorescent organic light-emitting devices based on bipolar host[J]. Chinese Journal of Luminescence, 2014, 35(6): 717‒721. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=fgxb201406015

    [2]

    纪永成, 刘士浩, 刘文博, 等.单向发射的透明红光有机发光器件[J].发光学报, 2014, 35(11): 1354‒1358. http://www.cqvip.com/QK/92489X/201411/70718866504849524949484954.html

    Ji Yongcheng, Liu Shihao, Liu Wenbo, et al. One-direction- emission red transparent organic Light-emitting devices[J]. Chinese Journal of Luminescence, 2014, 35(11): 1354‒1358. http://www.cqvip.com/QK/92489X/201411/70718866504849524949484954.html

    [3]

    田苗苗, 贺小光, 祁金刚, 等.一种高电流密度下效率不降低的绿光有机电致发光器件[J].发光学报, 2015, 36(11): 1307‒1310. http://d.wanfangdata.com.cn/Periodical_fgxb201511014.aspx

    Tian Miaomiao, He Xiaoguang, Qi Jingang, et al. High effi-ciency green organic light-emitting diode without roll-off under high current density[J]. Chinese Journal of Luminescence, 2015, 36(11): 1307‒1310. http://d.wanfangdata.com.cn/Periodical_fgxb201511014.aspx

    [4]

    田苗苗, 贺小光, 祁金刚, 等. IPTO薄膜制备及其在有机光电器件中的应用[J].发光学报, 2015, 36(10): 1162‒1166. http://www.cnki.com.cn/Article/CJFDTotal-FGXB201510015.htm

    Tian Miaomiao, He Xiaoguang, Qi Jingang, et al. Preparation of transparent conductive praseodymium titanate doped indium oxide film and its application in organic opto-electronic devices[J]. Chinese Journal of Luminescence, 2015, 36(10): 1162‒1166. http://www.cnki.com.cn/Article/CJFDTotal-FGXB201510015.htm

    [5]

    Uoyama H, Goushi K, Shizu K, et al. Highly efficient organic light-emitting diodes from delayed fluorescence[J]. Nature, 2012, 492(7428): 234‒238. doi: 10.1038/nature11687

    [6]

    Nakayama T, Itoh Y, Kakuta A. Organic photo- and electroluminescent devices with double mirrors[J]. Applied Physics Letters, 1993, 63(5): 594‒595. doi: 10.1063/1.109959

    [7]

    Zhao Bo, Su Zisheng, Li Wenlian, et al. High efficient white organic light-emitting diodes based on triplet multiple quantum well structure[J]. Applied Physics Letters, 2012, 101(5): 053310. doi: 10.1063/1.4742739

    [8]

    Zhao Yongbiao, Chen Jiangshan, Ma Dongge. Ultrathin nondoped emissive layers for efficient and simple monochrome and white organic Light-Emitting diodes[J]. ACS Applied Materials & Interfaces, 2013, 5(3): 967‒971. http://pubs.acs.org/doi/abs/10.1021/am3026097

    [9]

    Suzuki M, Yokoyama H, Brorson S D, et al. Observation of spontaneous emission lifetime change of dye-containing Langmuir-Blodgett films in optical microcavities[J]. Applied Physics Letters, 1991, 58(10): 998‒1000. doi: 10.1063/1.104388

    [10]

    Takada N, Tsutsui T, Saito S. Control of emission characteristics in organic thin-film electroluminescent diodes using an opti-cal-microcavity structure[J]. Applied Physics Letters, 1993, 63(15): 2032‒2034. doi: 10.1063/1.110582

    [11]

    Liu Yuefeng, Feng Jing, Yin Da, et al. Viewing-angle independence of white emission from microcavity top-emitting organic light-emitting devices with periodically and gradually changed cavity length[J]. Organic Electronics, 2013, 14(6): 1597‒1601. doi: 10.1016/j.orgel.2013.03.030

    [12]

    郭荣新, 陈燕, 王加贤.顶发射有机发光器件的研制[J].半导体技术, 2013, 38(3): 189‒193. http://www.cqvip.com/QK/91661X/201303/45086930.html

    Guo Rongxin, Chen Yan, Wang Jiaxian. Study and fabrication of top-emitting organic light-emitting devices[J]. Semiconductor Technology, 2013, 38(3): 189‒193. http://www.cqvip.com/QK/91661X/201303/45086930.html

    [13]

    李韶杰, 李艳菲.蓝光磷光微腔有机电致发光器件特性的研究[J].光电子•激光, 2013, 24(10): 1873‒1877. http://www.cqvip.com/QK/92586A/201310/47382819.html

    Li Shaojie, Li Yanfei. Characteristics of blue phosphorescent microcavity organic electrolu minescent light emitting device[J]. Journal of Optoelectronics • Laser, 2013, 24(10): 1873‒1877. http://www.cqvip.com/QK/92586A/201310/47382819.html

    [14]

    张麦丽, 张方辉, 张微, 等.微腔结构对红光磷光OLED的性能的影响研究[J].光电子•激光, 2013, 24(5): 887‒891. http://www.cqvip.com/QK/92586A/201305/45621185.html

    Zhang Maili, Zhang Fanghui, Zhang Wei, et al. Influence of microcavity structure on the properties of red phosphorescent organic light emitting devices[J]. Journal of Optoelectronics • Laser, 2013, 24(5): 887‒891. http://www.cqvip.com/QK/92586A/201305/45621185.html

    [15]

    Jiao Bo, Yu Yue, Dai Yang, et al. Improvement of light extraction in organic light-emitting diodes using a corrugated microcavity.[J]. Optics Express, 2015, 23(4):4055‒4064. doi: 10.1364/OE.23.004055

    [16]

    Deppe D G, Lei C, Lin C C, et al. Spontaneous emission from planar microstructures[J]. Journal of Modern Optics, 1994, 41(2): 325‒344. doi: 10.1080/09500349414550361

  • 加载中

(5)

计量
  • 文章访问数:  6359
  • PDF下载数:  3305
  • 施引文献:  0
出版历程
收稿日期:  2016-09-28
修回日期:  2016-12-19
刊出日期:  2017-03-15

目录

/

返回文章
返回