Zhang Yanjun, Tian Yongsheng, Fu Xinghu, et al. Adjustable range draw-wire type fiber Bragg grating displacement sensor[J]. Opto-Electronic Engineering, 2017, 44(6): 626-632. doi: 10.3969/j.issn.1003-501X.2017.06.009
Citation: Zhang Yanjun, Tian Yongsheng, Fu Xinghu, et al. Adjustable range draw-wire type fiber Bragg grating displacement sensor[J]. Opto-Electronic Engineering, 2017, 44(6): 626-632. doi: 10.3969/j.issn.1003-501X.2017.06.009

Adjustable range draw-wire type fiber Bragg grating displacement sensor

    Fund Project:
More Information
  • Abstract: In order to solve the problem of displacement monitoring of health monitoring system in the complex electromagnetic environment, and realize the real-time monitoring of large mechanical and engineering structure health and safety conditions, a novel fiber Bragg grating displacement sensor based on the structure of the cantilever beam is designed. Two fiber gratings with different central wavelengths are symmetrically pasted on the both sides of the cantilever beam. When the free end of the cantilever beam is changed, the two fiber gratings are respectively subjected to tension and pressure, which leads to the drift of the gratings center wavelength to the opposite directions. Through demarcating the relationship between the two center wavelength difference and displacement, it is possible to realize the measurement of the displacement. At the same time, the problem of cross sensitivity between temperature and displacement is solved. The sensor adopts draw-wire type displacement transmission mode, which makes the sensor installation location and measurement method more flexible. In addition, a smart device used to change the measuring range of the sensor is designed and it is also easy to be assembled and disassembled, so the whole sensor can be widely used. The experimental results show that when the range is 60 mm, the average sensitivity of the displacement sensor is 47.7 pm/mm, the correlation coefficient is 0.998, the repeatability error is 2.83% FS and the hysteresis error is 1.02% FS. The displacement sensor is characterized by simple structure and adjustable range, which can meet the demands of displacement measurement under different environments.
  • 加载中
  • [1] 吴晶, 吴晗平, 黄俊斌, 等.用于船舶结构监测的大量程光纤布拉格光栅应变传感器[J].光学精密工程, 2014, 22(2):311–317.

    Google Scholar

    Wu Jing, Wu Hanping, Huang Junbin, et al. Large range FBG sensor for ship structure health monitoring[J].Optics and Precision Engineering, 2014, 22(2):311–317.

    Google Scholar

    [2] 张燕君, 王光宇, 付兴虎.长周期光纤光栅-布拉格光纤光栅多波长解调[J].光电工程, 2016, 43(8):13–17.

    Google Scholar

    Zhang Yanjun, Wang Guangyu, Fu Xinghu. Multiple wavelength demodulation method of long period fiber grating and fiber Bragg grating[J]. Opto-Electronic Engineering, 2016, 43(8):13–17.

    Google Scholar

    [3] Marignetti F, de Santis D, Avino S, et al. Fiber Bragg grating sensor for electric field measurement in the end windings of high-voltage electric machines[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):2796–2802. doi: 10.1109/TIE.2016.2516500

    CrossRef Google Scholar

    [4] 刘波, 牛文成, 杨亦飞, 等.基于光纤布喇格光栅传感器的精密位移测量[J].纳米技术与精密工程, 2005, 3(1):53–55.

    Google Scholar

    Liu Bo, Niu Wencheng, Yang Yifei, et al. Exactitude displacement measurement based on fiber Bragg grating sensors[J]. Nanotechnology and Precision Engineering, 2005, 3(1):53–55.

    Google Scholar

    [5] 杨秀峰, 于汇, 王鹏, 等.基于杠杆原理的新型光纤光栅微位移传感器[J].光电子·激光, 2010, 21(8):1156–1158.

    Google Scholar

    Yang Xiufeng, Yu Hui, Wang Peng, et al. A novel micrometric displacement fiber grating sensor based on the principle of lever[J]. Journal of Optoelectronics·Laser, 2010, 21(8):1156–1158.

    Google Scholar

    [6] Berkovic G, Shafir E. Optical methods for distance and displacement measurements[J]. Advances in Optics and Photonics, 2012, 4(4):441–471. doi: 10.1364/AOP.4.000441

    CrossRef Google Scholar

    [7] Falciai R, Trono C. Curved elastic beam with opposed fiber-Bragg gratings for measurement of large displacements with temperature compensation[J]. IEEE Sensors Journal, 2005, 5(6):1310–1314. doi: 10.1109/JSEN.2005.844344

    CrossRef Google Scholar

    [8] 崔留住, 江毅, 刘有海.具有温度补偿的光纤位移传感器[J].光子学报, 2011, 40(11):1667–1670.

    Google Scholar

    Cui Liuzhu, Jiang Yi, Liu Youhai. A fiber optic displacement sensor with temperature compensation[J]. Acta Photonica Sinica, 2011, 40(11):1667–1670.

    Google Scholar

    [9] Dias G L, Magalh es R R, Ferreira D D, et al. The use of a robotic arm for displacement measurements in a cantilever beam[J]. International Journal of Manufacturing, Materials, and Mechanical Engineering, 2016, 6(3):45–57. doi: 10.4018/IJMMME

    CrossRef Google Scholar

    [10] Shishkovski D, Petreski Z, Tasevski G. Development of system for displacement measurement of a cantilever beam with strain gauge sensor[J]. Mechanical Engineering-Scientific Journal, 2015, 33(2):115–120.

    Google Scholar

    [11] 吴入军, 郑百林, 付昆昆, 等.表面粘贴式光纤布拉格光栅传感器层状结构对测量应变的影响[J].光学精密工程, 2014, 22(12):3183–3190.

    Google Scholar

    Wu Rujun, Zheng Bailin, Fu Kunkun, et al. Influence of layered structure for surface-bonded FBG sensor on measured strain[J]. Optics and Precision Engineering, 2014, 22(12):3183–3190.

    Google Scholar

    [12] 张开玉, 赵洪, 张伟超, 等.基于等应变梁的光纤光栅静电电压传感器[J].光学学报, 2015, 35(3):63–70.

    Google Scholar

    Zhang Kaiyu, Zhao Hong, Zhang Weichao, et al. Fiber Bragg grating electrostatic voltage sensor based on uniform strain beam[J]. Acta Optica Sinica, 2015, 35(3):63–70.

    Google Scholar

    [13] 张锦龙, 余重秀, 王葵如, 等.一种新型温度自补偿的低成本位移传感解调系统[J].光电子·激光, 2008, 19(10):1291–1293. doi: 10.3321/j.issn:1005-0086.2008.10.002

    CrossRef Google Scholar

    Zhang Jinlong, Yu Chongxiu, Wang Kuiru, et al. A newtype low-cost displacement sensor with temperature self-compen sation[J]. Journal of Optoelectronics·Laser, 2008, 19(10):1291–1293. doi: 10.3321/j.issn:1005-0086.2008.10.002

    CrossRef Google Scholar

    [14] Liu Qinpeng, Jia Zhen'an, Fu Haiwei, et al. Double cantilever beams accelerometer using short fiber Bragg grating for eliminating chirp[J].IEEE Sensors Journal, 2016, 16(17):6611–6616. doi: 10.1109/JSEN.2016.2588485

    CrossRef Google Scholar

  • Displacement measurement technology is widely used and it is one of the most basic testing techniques. Inorder to solve the problem of displacement monitoring of health monitoring system in the complex electromagneticenvironment, and realize the real-time monitoring of large mechanical and engineering structure health and safetyconditions, a novel fiber Bragg grating displacement sensor based on the structure of the cantilever beam is designedin this paper. The fiber Bragg grating displacement sensor is mainly composed of cantilever beam, fiber Bragg grating,central transmission shaft, bearing, torsion spring and displacement conversion device. The main body of the sensor isencapsulated inside a box, and a smart displacement conversion device is specially designed outside the box, which isused to adjust the range of the sensor and realize the measurement in wide range. Two fiber gratings with differentcentral wavelengths are symmetrically pasted on the both sides of the cantilever beam. When the free end of the cantilever beam is changed, the two fiber gratings are respectively subjected to tension and pressure, which leads to thedrift of the gratings center wavelength to the opposite directions. Through demarcating the relationship between thetwo center wavelength difference and displacement, it is possible to realize the measurement of the displacement. Atthe same time, the influence of the temperature on the wavelength shift can be eliminated by central wavelength difference of the two gratings, and the problem of cross sensitivity between temperature and displacement is also solved.The sensor adopts draw-wire type displacement transmission mode, which makes the sensor installation location andmeasurement method more flexible. In addition, a smart device used to change the measuring range of the sensor isdesigned and it is also easy to be assembled and disassembled, so the whole sensor can be widely used. The displacement measurement system and temperature measurement system are set up to test the overall performance of the displacement sensor. The experimental results show that when the range is 60 mm, the average sensitivity of the displacement sensor is 47.7 pm/mm, the correlation coefficient is 0.998, the repeatability error is 2.83% FS and the hysteresis error is 1.02% FS. The temperature coefficients of FBG1 and FBG2 are 25.8 pm/ and 28.9 pm/ , as well as the ℃ ℃temperature coefficient of the sensor is -3.1 pm/ . The structure of the ℃ double grating can achieve the effect of temperature compensation, reduce the temperature coefficient of the displacement sensor, and reduce the influence of thechange of the environmental temperature on the displacement measurement. The displacement sensor is characterizedby simple structure and adjustable range, which can meet the demands of displacement measurement under differentenvironments.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(6976) PDF downloads(2804) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint