可调量程拉绳式光纤布拉格光栅位移传感器

张燕君, 田永胜, 付兴虎, 等. 可调量程拉绳式光纤布拉格光栅位移传感器[J]. 光电工程, 2017, 44(6): 626-632. doi: 10.3969/j.issn.1003-501X.2017.06.009
引用本文: 张燕君, 田永胜, 付兴虎, 等. 可调量程拉绳式光纤布拉格光栅位移传感器[J]. 光电工程, 2017, 44(6): 626-632. doi: 10.3969/j.issn.1003-501X.2017.06.009
Zhang Yanjun, Tian Yongsheng, Fu Xinghu, et al. Adjustable range draw-wire type fiber Bragg grating displacement sensor[J]. Opto-Electronic Engineering, 2017, 44(6): 626-632. doi: 10.3969/j.issn.1003-501X.2017.06.009
Citation: Zhang Yanjun, Tian Yongsheng, Fu Xinghu, et al. Adjustable range draw-wire type fiber Bragg grating displacement sensor[J]. Opto-Electronic Engineering, 2017, 44(6): 626-632. doi: 10.3969/j.issn.1003-501X.2017.06.009

可调量程拉绳式光纤布拉格光栅位移传感器

  • 基金项目:
    国家自然科学基金(11673040, 61675176);河北省自然科学基金(F2014203125);燕山大学“新锐工程”人才支持计划项目资助
详细信息

Adjustable range draw-wire type fiber Bragg grating displacement sensor

  • Fund Project:
More Information
  • 为了解决在复杂电磁环境下大位移量的监测问题,实现对大型机械和工程结构健康安全状况的实时监测,设计了一种基于悬臂梁结构的可调量程拉绳式光纤布拉格光栅位移传感器。悬臂梁两侧对称粘贴了两个不同中心波长的光纤光栅,当悬臂梁自由端的位置发生变化时,两个光纤光栅分别受到拉力和压力,因此光栅的中心波长向相反方向漂移。通过对两个中心波长差值与位移量关系的标定,可以排除温度的影响,实现对位移量的测量。传感器采用了拉绳式的位移传递方式,使得传感器的安装位置及测量方式更加灵活;便于拆装的位移转换装置,可以方便地调整传感器的量程,使其具有更广泛的适用性。位移传感实验结果表明,在传感器量程为60 mm时,位移传感器的平均灵敏度为47.7 pm/mm,相关系数达到0.998,重复性误差为2.83% FS,迟滞误差为1.02% FS。该位移传感器具有结构简单、量程可调的特点,可以满足不同环境下的位移测量需求。

  • Displacement measurement technology is widely used and it is one of the most basic testing techniques. Inorder to solve the problem of displacement monitoring of health monitoring system in the complex electromagneticenvironment, and realize the real-time monitoring of large mechanical and engineering structure health and safetyconditions, a novel fiber Bragg grating displacement sensor based on the structure of the cantilever beam is designedin this paper. The fiber Bragg grating displacement sensor is mainly composed of cantilever beam, fiber Bragg grating,central transmission shaft, bearing, torsion spring and displacement conversion device. The main body of the sensor isencapsulated inside a box, and a smart displacement conversion device is specially designed outside the box, which isused to adjust the range of the sensor and realize the measurement in wide range. Two fiber gratings with differentcentral wavelengths are symmetrically pasted on the both sides of the cantilever beam. When the free end of the cantilever beam is changed, the two fiber gratings are respectively subjected to tension and pressure, which leads to thedrift of the gratings center wavelength to the opposite directions. Through demarcating the relationship between thetwo center wavelength difference and displacement, it is possible to realize the measurement of the displacement. Atthe same time, the influence of the temperature on the wavelength shift can be eliminated by central wavelength difference of the two gratings, and the problem of cross sensitivity between temperature and displacement is also solved.The sensor adopts draw-wire type displacement transmission mode, which makes the sensor installation location andmeasurement method more flexible. In addition, a smart device used to change the measuring range of the sensor isdesigned and it is also easy to be assembled and disassembled, so the whole sensor can be widely used. The displacement measurement system and temperature measurement system are set up to test the overall performance of the displacement sensor. The experimental results show that when the range is 60 mm, the average sensitivity of the displacement sensor is 47.7 pm/mm, the correlation coefficient is 0.998, the repeatability error is 2.83% FS and the hysteresis error is 1.02% FS. The temperature coefficients of FBG1 and FBG2 are 25.8 pm/ and 28.9 pm/ , as well as the ℃ ℃temperature coefficient of the sensor is -3.1 pm/ . The structure of the ℃ double grating can achieve the effect of temperature compensation, reduce the temperature coefficient of the displacement sensor, and reduce the influence of thechange of the environmental temperature on the displacement measurement. The displacement sensor is characterizedby simple structure and adjustable range, which can meet the demands of displacement measurement under differentenvironments.

  • 加载中
  • 图 1  光纤光栅位移传感器结构示意图.

    Figure 1.  Fiber Bragg grating displacement sensor structure diagram.

    图 2  悬臂梁结构传感器实验原理图.

    Figure 2.  The principle diagram of the cantilever beam structure sensor experiment.

    图 3  位移转换装置与中心传动轴的结构示意图.

    Figure 3.  The structure diagram of displacement conversion device and the center drive shaft.

    图 4  两个光纤光栅的反射谱图.

    Figure 4.  Reflection spectra of two fiber gratings.

    图 5  量程60 mm位移实验结果.

    Figure 5.  Range of 60 mm displacement experiment results.

    图 6  实验数据平均值及拟合处理.

    Figure 6.  Experimental data on average and fitting processing.

    图 7  量程30 mm位移实验结果.

    Figure 7.  The range of 30 mm displacement experiment results.

    图 8  光纤光栅的温度特性曲线图.

    Figure 8.  Wavelength and temperature relation curves of two FBGs.

    表 1  实际位移量与测量值间的测量误差.

    Table 1.  The error between actual displacement and the measured value.

    位移/mm 测量值/mm 测量误差/mm
    0 0.626 0.626
    5 5.204 0.204
    10 9.836 -0.164
    15 14.685 -0.315
    20 19.721 -0.279
    25 24.657 -0.343
    30 29.840 -0.160
    下载: 导出CSV

    表 2  正、反行程平均校准点及偏差值.

    Table 2.  The average calibration point and deviation value of the positive and reverse stroke.

    位移/mm 正行程平均校准点/nm 反行程平均校准点/nm 正、反行程偏差值/nm
    0 0.774 0.795 0.021
    5 0.977 0.966 0.011
    10 1.166 1.170 0.004
    15 1.387 1.378 0.009
    20 1.625 1.61 3 0.012
    25 1.873 1.844 0.029
    30 2.105 2.079 0.026
    35 2.340 2.337 0.003
    40 2.605 2.588 0.017
    45 2.844 2.842 0.002
    50 3.092 3.086 0.006
    55 3.358 3.367 0.009
    60 3.615 3.615 0
    下载: 导出CSV

    表 3  相同行程中各位移点的标准偏差.

    Table 3.  The standard deviation of different displacement points in the same journey.

    位移/mm 正行程标准偏差/mm 反行程标准偏差/mm
    0 0.0126 0.0188
    5 0.0105 0.0089
    10 0.0131 0.0204
    15 0.0115 0.0215
    20 0.0094 0.0079
    25 0.0110 0.0094
    30 0.0063 0.0099
    35 0.0178 0.0188
    40 0.0267 0.0194
    45 0.0215 0.0110
    50 0.0230 0.0068
    55 0.0188 0.0047
    60 0.0162 0.0162
    下载: 导出CSV
  • [1]

    吴晶, 吴晗平, 黄俊斌, 等.用于船舶结构监测的大量程光纤布拉格光栅应变传感器[J].光学精密工程, 2014, 22(2):311–317. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_gxjmgc201402010

    Wu Jing, Wu Hanping, Huang Junbin, et al. Large range FBG sensor for ship structure health monitoring[J].Optics and Precision Engineering, 2014, 22(2):311–317. http://industry.wanfangdata.com.cn/yj/Detail/Periodical?id=Periodical_gxjmgc201402010

    [2]

    张燕君, 王光宇, 付兴虎.长周期光纤光栅-布拉格光纤光栅多波长解调[J].光电工程, 2016, 43(8):13–17. http://mall.cnki.net/magazine/Article/GDGC201608003.htm

    Zhang Yanjun, Wang Guangyu, Fu Xinghu. Multiple wavelength demodulation method of long period fiber grating and fiber Bragg grating[J]. Opto-Electronic Engineering, 2016, 43(8):13–17. http://mall.cnki.net/magazine/Article/GDGC201608003.htm

    [3]

    Marignetti F, de Santis D, Avino S, et al. Fiber Bragg grating sensor for electric field measurement in the end windings of high-voltage electric machines[J]. IEEE Transactions on Industrial Electronics, 2016, 63(5):2796–2802. doi: 10.1109/TIE.2016.2516500

    [4]

    刘波, 牛文成, 杨亦飞, 等.基于光纤布喇格光栅传感器的精密位移测量[J].纳米技术与精密工程, 2005, 3(1):53–55. http://www.cqvip.com/QK/87571X/2005001/15320949.html

    Liu Bo, Niu Wencheng, Yang Yifei, et al. Exactitude displacement measurement based on fiber Bragg grating sensors[J]. Nanotechnology and Precision Engineering, 2005, 3(1):53–55. http://www.cqvip.com/QK/87571X/2005001/15320949.html

    [5]

    杨秀峰, 于汇, 王鹏, 等.基于杠杆原理的新型光纤光栅微位移传感器[J].光电子·激光, 2010, 21(8):1156–1158. http://www.cnki.com.cn/Article/CJFDTotal-TXJS201405023.htm

    Yang Xiufeng, Yu Hui, Wang Peng, et al. A novel micrometric displacement fiber grating sensor based on the principle of lever[J]. Journal of Optoelectronics·Laser, 2010, 21(8):1156–1158. http://www.cnki.com.cn/Article/CJFDTotal-TXJS201405023.htm

    [6]

    Berkovic G, Shafir E. Optical methods for distance and displacement measurements[J]. Advances in Optics and Photonics, 2012, 4(4):441–471. doi: 10.1364/AOP.4.000441

    [7]

    Falciai R, Trono C. Curved elastic beam with opposed fiber-Bragg gratings for measurement of large displacements with temperature compensation[J]. IEEE Sensors Journal, 2005, 5(6):1310–1314. doi: 10.1109/JSEN.2005.844344

    [8]

    崔留住, 江毅, 刘有海.具有温度补偿的光纤位移传感器[J].光子学报, 2011, 40(11):1667–1670. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb200604010

    Cui Liuzhu, Jiang Yi, Liu Youhai. A fiber optic displacement sensor with temperature compensation[J]. Acta Photonica Sinica, 2011, 40(11):1667–1670. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=qhdxxb200604010

    [9]

    Dias G L, Magalh es R R, Ferreira D D, et al. The use of a robotic arm for displacement measurements in a cantilever beam[J]. International Journal of Manufacturing, Materials, and Mechanical Engineering, 2016, 6(3):45–57. doi: 10.4018/IJMMME

    [10]

    Shishkovski D, Petreski Z, Tasevski G. Development of system for displacement measurement of a cantilever beam with strain gauge sensor[J]. Mechanical Engineering-Scientific Journal, 2015, 33(2):115–120. https://www.researchgate.net/profile/Dejan_Shishkovski/publication/291970379_DEVELOPMENT_OF_SYSTEM_FOR_DISPLACEMENT_MEASUREMENT_OF_A_CANTILEVER_BEAM_WITH_STRAIN_GAUGE_SENSOR/links/56a7bbef08ae860e0255848b.pdf?origin=publication_list

    [11]

    吴入军, 郑百林, 付昆昆, 等.表面粘贴式光纤布拉格光栅传感器层状结构对测量应变的影响[J].光学精密工程, 2014, 22(12):3183–3190. http://www.eope.net/gxjmgc/CN/abstract/abstract15568.shtml

    Wu Rujun, Zheng Bailin, Fu Kunkun, et al. Influence of layered structure for surface-bonded FBG sensor on measured strain[J]. Optics and Precision Engineering, 2014, 22(12):3183–3190. http://www.eope.net/gxjmgc/CN/abstract/abstract15568.shtml

    [12]

    张开玉, 赵洪, 张伟超, 等.基于等应变梁的光纤光栅静电电压传感器[J].光学学报, 2015, 35(3):63–70. http://www.opticsjournal.net/abstract.htm?id=OJ150210000024x4A7D0

    Zhang Kaiyu, Zhao Hong, Zhang Weichao, et al. Fiber Bragg grating electrostatic voltage sensor based on uniform strain beam[J]. Acta Optica Sinica, 2015, 35(3):63–70. http://www.opticsjournal.net/abstract.htm?id=OJ150210000024x4A7D0

    [13]

    张锦龙, 余重秀, 王葵如, 等.一种新型温度自补偿的低成本位移传感解调系统[J].光电子·激光, 2008, 19(10):1291–1293. doi: 10.3321/j.issn:1005-0086.2008.10.002

    Zhang Jinlong, Yu Chongxiu, Wang Kuiru, et al. A newtype low-cost displacement sensor with temperature self-compen sation[J]. Journal of Optoelectronics·Laser, 2008, 19(10):1291–1293. doi: 10.3321/j.issn:1005-0086.2008.10.002

    [14]

    Liu Qinpeng, Jia Zhen'an, Fu Haiwei, et al. Double cantilever beams accelerometer using short fiber Bragg grating for eliminating chirp[J].IEEE Sensors Journal, 2016, 16(17):6611–6616. doi: 10.1109/JSEN.2016.2588485

  • 加载中

(8)

(3)

计量
  • 文章访问数:  7143
  • PDF下载数:  2852
  • 施引文献:  0
出版历程
收稿日期:  2017-01-11
修回日期:  2017-03-20
刊出日期:  2017-06-15

目录

/

返回文章
返回