激光冲击强化设备控制系统

陆莹, 赵吉宾, 乔红超. 激光冲击强化设备控制系统[J]. 光电工程, 2017, 44(8): 826-832. doi: 10.3969/j.issn.1003-501X.2017.08.010
引用本文: 陆莹, 赵吉宾, 乔红超. 激光冲击强化设备控制系统[J]. 光电工程, 2017, 44(8): 826-832. doi: 10.3969/j.issn.1003-501X.2017.08.010
Ying Lu, Jibin Zhao, Hongchao Qiao. The laser shock processing control system[J]. Opto-Electronic Engineering, 2017, 44(8): 826-832. doi: 10.3969/j.issn.1003-501X.2017.08.010
Citation: Ying Lu, Jibin Zhao, Hongchao Qiao. The laser shock processing control system[J]. Opto-Electronic Engineering, 2017, 44(8): 826-832. doi: 10.3969/j.issn.1003-501X.2017.08.010

激光冲击强化设备控制系统

  • 基金项目:
    国家重点研发计划(2016YFB1102704);国家机器人重点实验室
详细信息
    通讯作者: 陆莹, E-mail: luying@sia.cn
  • 中图分类号: TS206

The laser shock processing control system

  • Fund Project:
More Information
  • 针对复杂曲面类零件,研发一种新型表面激光冲击强化的控制系统,该系统是一套全自动可控操作系统,通过工控机/PLC集成控制,实现自动化、数字化控制,并完成实时在线监控和信息交互反馈,属于开放式分布系统。该系统用于激光冲击强化核心设备(包括激光器、机器人、辅助控制、质量检测装置与辅助系统等),实现各环节的信息交互和系统的协同工作,通过实时监控系统,远程观察加工状态,有效避免重大事故的发生。同时,该控制系统添加激光冲击强化工艺试验数据记录功能,可根据实际需求调用后台工艺参数数据库,实现高效工艺参数优化。除此之外,该系统还能够实现激光冲击强化模型建立、加工过程有限元模拟、复杂曲面加工轨迹自动规划、加工策略制定等功能,从而实现激光冲击强化自动化生产,目前已经处于工程应用阶段。

  • 加载中
  • 图 1  激光冲击强化控制系统的工作流程. (a) 激光冲击强化轨迹自动规划加工路线图. (b) 激光冲击强化工艺数据库调用路线图.

    Figure 1.  The control system of laser shock processing. (a) The trajectory planning processing map of laser shock processing. (b) The process data selecting of laser shock processing.

    图 2  控制系统的主要功能.

    Figure 2.  The main functions of the control system.

    图 3  激光冲击强化控制系统硬件总体布局.

    Figure 3.  The overall layout of laser shock processing control sy

    图 4  文档管理功能.

    Figure 4.  Document management function.

    图 5  叶片加工轨迹的生成.

    Figure 5.  The formation of a blade process trajectory.

    图 6  加工轨迹代码生成.

    Figure 6.  Process track code generation.

    图 7  激光冲击强化实时监测、报警. (a) 实时监测摄像. (b) 实时监测可视界面.

    Figure 7.  The real-time monitoring and alarm laser shock processing. (a) Real-time monitoring. (b) Visual interface of real-time monitor.

    图 8  激光冲击强化装备的模拟系统操作界面.

    Figure 8.  The operation interface of laser shock processing equipment simulation system operation interface.

  • [1]

    Dai K, Villegas J, Stone Z, et al. Finite element modeling of the surface roughness of 5052 Al alloy subjected to a surface severe plastic deformation process[J]. Acta Materialia, 2004, 52(20): 5771-5782. doi: 10.1016/j.actamat.2004.08.031

    [2]

    Spanrad S, Tong J. Characterisation of foreign object damage (FOD) and early fatigue crack growth in laser shock peened Ti-6Al-4V aerofoil specimens[J]. Materials Science and Engineering: A, 2011, 528(4-5): 2128-2136. doi: 10.1016/j.msea.2010.11.045

    [3]

    See D W, Dulaney J L, Clauer A H, et al. The air force manufacturing technology laser peening initiative[J]. Surface Engineering, 2002, 18(1): 32-36. doi: 10.1179/026708401225001264

    [4]

    King A, Steuwer A, Woodward C, et al. Effects of fatigue and fretting on residual stresses introduced by laser shock peening[J]. Materials Science and Engineering: A, 2006, 435-436: 12-18. doi: 10.1016/j.msea.2006.07.020

    [5]

    Zhou J Z, Huang S, Zuo L D, et al. Effects of laser peening on residual stresses and fatigue crack growth properties of Ti-6Al-4V titanium alloy[J]. Optics and Lasers in Engineering, 2014, 52: 189-194. doi: 10.1016/j.optlaseng.2013.06.011

    [6]

    Ocaña J L, Morales M, García-Ballesteros J J, et al. Laser shock microforming of thin metal sheets[J]. Applied Surface Science, 2009, 255(10): 5633-5636. doi: 10.1016/j.apsusc.2008.10.084

    [7]

    李伟, 李应红, 何卫锋, 等. 激光冲击强化技术的发展和应用[J]. 激光与光电子学进展, 2008, 45(12): 15-19. doi: 10.3788/LOP20084512.0015

    Li Wei, Li Yinghong, He Weifeng, et al. Development and application of laser shock processing[J]. Laser & Optoelectronics Progress, 2008, 45(12): 15-19. doi: 10.3788/LOP20084512.0015

    [8]

    Sathyajith S, S Kalainathan. Effect of laser shot peening on precipitation hardened aluminum alloy 6061-T6 using low energy laser[J]. Optics and Lasers in Engineering, 2012, 50(3): 345-348. doi: 10.1016/j.optlaseng.2011.11.002

    [9]

    石朝阳, 刘赤荣, 应才苏. 激光冲击强化技术研究与应用现状[J]. 机械设计与制造, 2010, (4): 61-63. doi: 10.3969/j.issn.1001-3997.2010.04.025

    Shi Chaoyang, Liu Chirong, Ying Caisu. Research and application of laser shock processing[J]. Machinery Design & Manufacture, 2010, (4): 61-63. doi: 10.3969/j.issn.1001-3997.2010.04.025

    [10]

    Nie Xiangfan, He Weifeng, Zang Shunlai, et al. Effect study and application to improve high cycle fatigue resistance of TC11 titanium alloy by laser shock peening with multiple impacts[J]. Surface and Coatings Technology, 2014, 253: 68-75. doi: 10.1016/j.surfcoat.2014.05.015

    [11]

    聂祥樊, 何卫锋, 李启鹏, 等. 激光喷丸改善TC6钛合金组织和力学性能[J]. 强激光与粒子束, 2013, 25(5): 1115-1119. doi: 10.3788/HPLPB20132505.1115

    Nie Xiangfan, He Weifeng, Li Qipeng, et al. Improvement of structure and mechanical properties of TC6 titanium alloy with laser shock peening[J]. High Power Laser and Particle Beams, 2013, 25(5): 1115-1119. doi: 10.3788/HPLPB20132505.1115

    [12]

    Peyre P, Fabbro R, Merrien P, et al. Laser shock processing of aluminium alloys. Application to high cycle fatigue behaviour[J]. Materials Science and Engineering: A, 1996, 210(1-2): 102-113. doi: 10.1016/0921-5093(95)10084-9

    [13]

    Liu K K, Hill M R. The effects of laser peening and shot peening on fretting fatigue in Ti-6Al-4V coupons[J]. Tribology International, 2009, 42(9): 1250-1262. doi: 10.1016/j.triboint.2009.04.005

    [14]

    DeWald A T, Rankin J E, Hill M R, et al. Assessment of tensile residual stress mitigation in alloy 22 welds due to laser peening[J]. Journal of Engineering Materials and Technology, 2004, 126(4): 465-473. doi: 10.1115/1.1789957

    [15]

    Montross C S, Wei Tao, Ye Lin, et al. Laser shock processing and its effects on microstructure and properties of metal alloys: a review[J]. International Journal of Fatigue, 2002, 24(10): 1021-1036. doi: 10.1016/S0142-1123(02)00022-1

    [16]

    Chai Lihua, Chen Yuyong, Zhang Laiqi, et al. Effect of spark plasma sintering temperature on microstructure and mechanical properties of melt-spun TiAl alloys[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(3): 528-533. doi: 10.1016/S1003-6326(11)61209-0

    [17]

    陶春虎, 刘庆瑔, 曹春晓, 等. 航空用钛合金的失效及其预防[M]. 北京: 国防工业出版社, 2002: 5-10.

    Tao Chunhu, Liu Qingquan, Cao Chunxiao, et al. Failure and prevention of aeronautical titanium alloyAerospace titanium alloys failure and its prevention[M]. Beijing: Defense Press, 2002: 5-10.

    [18]

    胡太友, 乔红超, 赵吉宾, 等. 激光冲击强化设备的开发[J]. 光电工程, 2017, 44(7): 732-737. doi: 10.3969/j.issn.1003-501X.2017.07.010

    Hu Taiyou, Qiao Hongchao, Zhao Jibin, et al. Develop of Laser Shock Peening Device[J]. Opto-Electronic Engineering, 2017, 44(7): 732-737. doi: 10.3969/j.issn.1003-501X.2017.07.010

    [19]

    李松夏, 乔红超, 赵吉宾, 等. 激光冲击强化技术原理及研究发展[J]. 光电工程, 2017, 44(6): 569-576. doi: 10.3969/j.issn.1003-501X.2017.06.001

    Li Songxia, Qiao Hongchao, Zhao Jibin, et al. Laser shock peening technology principle and research development[J]. Opto-Electronic Engineering, 2017, 44(6): 569-576. doi: 10.3969/j.issn.1003-501X.2017.06.001

  • 加载中

(8)

计量
  • 文章访问数:  6405
  • PDF下载数:  3038
  • 施引文献:  0
出版历程
收稿日期:  2017-06-04
修回日期:  2017-07-14
刊出日期:  2017-08-15

目录

/

返回文章
返回