Lingfei Ji, Amina, Tianyang Yan, et al. Research progress of ultrafast laser industrial applications based on filamentation[J]. Opto-Electronic Engineering, 2017, 44(9): 851-861. doi: 10.3969/j.issn.1003-501X.2017.09.001
Citation: Lingfei Ji, Amina, Tianyang Yan, et al. Research progress of ultrafast laser industrial applications based on filamentation[J]. Opto-Electronic Engineering, 2017, 44(9): 851-861. doi: 10.3969/j.issn.1003-501X.2017.09.001

Research progress of ultrafast laser industrial applications based on filamentation

    Fund Project:
More Information
  • Ultrafast laser filamentation is an attractive nonlinear phenomenon as a consequence of dynamic balance between Kerr self-focusing and defocusing effect in the electron plasma generated through the ionization process. Achieving the regulation of the non-diffractive ultra-long transmission will play an important role in the development of novel ultrafast laser material processing technology. In this paper, the investigation on the research of ultrafast laser industrial application based on filamentation was introduced. From the physical feature, basic mechanism and characteristic advantages of filamentation effects, the representative research achievements on the laser applications of filamentary propagation induced by gas, liquid and solid different media were presented. The development problem and prospect of the technique were also considered and discussed.
  • 加载中
  • [1] 程亚.超快激光微纳加工:原理、技术与应用[M].北京:科学出版社, 2016.

    Google Scholar

    [2] Dausinger S, Hügel H, Konov V I. Micromachining with ultrashort laser pulses: From basic understanding to technical applications[J]. Proceedings of SPIE, 2003, 5147: 106–115.

    Google Scholar

    [3] Gattass R R, Mazur E. Femtosecond laser micromachining in transparent materials[J]. Nature Photonics, 2008, 2(4): 219–225. doi: 10.1038/nphoton.2008.47

    CrossRef Google Scholar

    [4] Cheng g, Rudenko A, D'Amico C, et al. Embedded nanogratings in bulk fused silica under non-diffractive Bessel ultrafast laser irradiation[J]. Applied Physics Letters, 2017, 110(26): 261901. doi: 10.1063/1.4987139

    CrossRef Google Scholar

    [5] Bhuyan M K, Velpula P K, Colombier J P, et al. Single-shot high aspect ratio bulk nanostructuring of fused silica using chirp-controlled ultrafast laser Bessel beams[J]. Applied Physics Letters, 2014, 104(2): 021107. doi: 10.1063/1.4861899

    CrossRef Google Scholar

    [6] Butkus S, Paipulas D, Sirutkaitis R, et al. Rapid cutting and drilling of transparent materials via femtosecond laser filamentation[J]. Journal of Laser Micro/Nano Engineering, 2014, 9(3): 213–220.

    Google Scholar

    [7] Sudrie L, Franco M, Prade B, et al. Study of damage in fused silica induced by ultra-short IR laser pulses[J]. Optics Communications, 2001, 191(3–6): 333–339. doi: 10.1016/S0030-4018(01)01152-X

    CrossRef Google Scholar

    [8] Tan Dezhi, Sharafudeen K N, Yue Yuanzheng, et al. Femtosecond laser induced phenomena in transparent solid materials: Fundamentals and applications[J]. Progress in Materials Science, 2016, 76: 154–228. doi: 10.1016/j.pmatsci.2015.09.002

    CrossRef Google Scholar

    [9] De Aldana J R V, Moreno P, Roso L. Ultrafast lasers: A new frontier for optical materials processing[J]. Optical Materials, 2012, 34(3): 572–578. doi: 10.1016/j.optmat.2011.05.002

    CrossRef Google Scholar

    [10] 何飞, 廖洋, 程亚.利用飞秒激光直写实现透明介电材料中三维微纳结构的制备与集成[J].物理学进展, 2012, 32(2): 98–113.

    Google Scholar

    He Fei, Liao Yang, Cheng Ya. Fabrication and integration of three-dimensional micro/nano-structures inside dielectric materials using femtosecond laser direct writing[J]. Progress in Physics, 2012, 32(2): 98–113.

    Google Scholar

    [11] 李焱, 蒋红兵, 杨宏, 等.透明材料飞秒激光三维微制备[J].量子电子学报, 2004, 21(2): 188–193.

    Google Scholar

    Li Yan, Jiang Hongbing, Yang Hong, et al. Three-dimensional microfabrication in transparent materials with femtosecond laser pulses[J]. Chinese Journal of Quantum Electronics, 2004, 21(2): 188–193.

    Google Scholar

    [12] 夏博, 姜澜, 王素梅, 等.飞秒激光微孔加工[J].中国激光, 2013, 40(2): 0201001.

    Google Scholar

    Xia Bo, Jiang Lan, Wang Sumei, et al. Femtosecond laser drilling of micro-holes[J]. Chinese Journal of Lasers, 2013, 40(2): 0201001.

    Google Scholar

    [13] Li Helong, Chu Wei, Xu Huailiang, et al. Simultaneous identification of multi-combustion-intermediates of alkanol-air flames by femtosecond filament excitation for combustion sensing[J]. Scientific Reports, 2016, 6: 27340. doi: 10.1038/srep27340

    CrossRef Google Scholar

    [14] Davis K M, Miura K, Sugimoto N, et al. Writing waveguides in glass with a femtosecond laser[J]. Optics Letters, 1996, 21(21): 1729–1731. doi: 10.1364/OL.21.001729

    CrossRef Google Scholar

    [15] Kovachev L M, Georgieva D A. The long range filament stability: balance between non-paraxial diffraction and third-order nonlinearity[J]. Proceedings of SPIE, 2013, 8770: 87701G. doi: 10.1117/12.2013663

    CrossRef Google Scholar

    [16] Daigle J F, Kosareva O, Panov N, et al. A simple method to significantly increase filaments' length and ionization density[J]. Applied Physics B, 2009, 94(2): 249–257. doi: 10.1007/s00340-008-3270-5

    CrossRef Google Scholar

    [17] Couairon A, Mysyrowicz A. Femtosecond filamentation in transparent media[J]. Physics Reports, 2007, 441(2–4): 47–189. doi: 10.1016/j.physrep.2006.12.005

    CrossRef Google Scholar

    [18] Zergioti I, Kyrkis K D, Papazoglou D G, et al. Structural modifications in fused silica induced by ultraviolet fs laser filaments[J]. Applied Surface Science, 2007, 253(19): 7865–7868. doi: 10.1016/j.apsusc.2007.02.095

    CrossRef Google Scholar

    [19] Hosseini S A, Herman P R. Method of material processing by laser filamentation: WO/2012/006736 Kind Code: A3[P]. 2012-01-19.

    Google Scholar

    [20] 盛政明.强场激光物理研究前沿[M].上海:上海交通大学出版社, 2014.

    Google Scholar

    Sheng Zhengming. Advances in high field laser physics[M]. Shanghai: Shanghai Jiao Tong University Press, 2014.

    Google Scholar

    [21] Braun A, Korn G, Liu X, et al. Self-channeling of high-peak-power femtosecond laser pulses in air[J]. Optics Letters, 1995, 20(1): 73–75. doi: 10.1364/OL.20.000073

    CrossRef Google Scholar

    [22] Brodeur A, Chien C Y, Ilkov F A, et al. Moving focus in the propagation of ultrashort laser pulses in air[J]. Optics Letters, 1997, 22(5): 304–306. doi: 10.1364/OL.22.000304

    CrossRef Google Scholar

    [23] Mlejnek M, Wright E M, Moloney J V. Dynamic spatial replenishment of femtosecond pulses propagating in air[J]. Optics Letters, 1998, 23(5): 382–384. doi: 10.1364/OL.23.000382

    CrossRef Google Scholar

    [24] Ashkenasi D, Kaszemeikat T, Mueller N, et al. Machining of glass and quartz using nanosecond and picosecond laser pulses[J]. Proceedings of SPIE, 2012, 8243: 82430M. doi: 10.1117/12.907740

    CrossRef Google Scholar

    [25] Du Keming, Brüning S, Gillner A. High-power picosecond laser with 400W average power for large scale applications[J]. Proceedings of SPIE, 2012, 8244: 82440P. doi: 10.1117/12.915676

    CrossRef Google Scholar

    [26] Zvorykin V D, Ionin A A, Levchenko A O, et al. Effects of picosecond terawatt UV laser beam filamentation and a repetitive pulse train on creation of prolonged plasma channels in atmospheric air[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2013, 309: 218–222. doi: 10.1016/j.nimb.2013.02.030

    CrossRef Google Scholar

    [27] Tzortzakis S, Lamouroux B, Chiron A, et al. Femtosecond and picosecond ultraviolet laser filaments in air: experiments and simulations[J]. Optics Communications, 2001, 197(1–3): 131–143. doi: 10.1016/S0030-4018(01)01443-2

    CrossRef Google Scholar

    [28] 倪洁蕾, 程亚.飞秒激光成丝若干新效应研究进展[J].深圳大学学报理工版, 2014, 31(1): 1–15.

    Google Scholar

    Ni Jielei, Cheng Ya. Several new phenomena in femtosecond laser filamentation[J]. Journal of Shenzhen University Science and Engineering, 2014, 31(1): 1–15.

    Google Scholar

    [29] Ju Jingjing, Liu Jiansheng, Wang Cheng, et al. Effects of initial humidity and temperature on laser-filamentation-induced condensation and snow formation[J]. Applied Physics B, 2013, 110(3): 375–380. doi: 10.1007/s00340-012-5265-5

    CrossRef Google Scholar

    [30] 林尊琪, 陈卫标, 楼祺洪, 等.我国近期激光前沿若干重要进展评述[J].中国科学:技术科学, 2013, 43(9): 961–978.

    Google Scholar

    Lin Zunqi, Chen Weibiao, Lou Qihong, et al. Review on the recent progress of laser frontiers in China[J]. Science China Technological Science, 2013, 56(7): 1571–1588.

    Google Scholar

    [31] Ju Jingjing, Liu Jiansheng, Wang Cheng, et al. Laser-filamentation-induced condensation and snow formation in a cloud chamber[J]. Optics Letters, 2012, 37(7): 1214–1216. doi: 10.1364/OL.37.001214

    CrossRef Google Scholar

    [32] Kiselev D, Woeste L, Wolf J P. Filament-induced laser machining (FILM)[J]. Applied Physics B, 2010, 100(3): 515–520. doi: 10.1007/s00340-010-4102-y

    CrossRef Google Scholar

    [33] 北京工业大学. 一种激光三维精细曲面铣削的方法: 中国, CN201610218392. 8[P]. 2016-08-17.

    Google Scholar

    University Beijing Technology. Three-dimensional laser precise curved surface milling method: China, CN201610218392. 8[P]. 2016-08-17.http://www.wanfangdata.com.cn/details/detail.do?_type=patent&id=CN201610218392.8

    Google Scholar

    [34] 燕天阳, 季凌飞, Li Lin, 等.蓝宝石亚微米级精细切面化学辅助皮秒激光成丝切割研究[J].中国激光, 2017, 44(10): 1002002.

    Google Scholar

    Yan Tianyang, Ji Lingfei, Li Lin, et al. High precision processing of sapphire with submicron cut-surface Roughness by chemical-assisted picosecond laser[J]. Chinese Journal of Lasers, 2017, 44(10): 1002002.

    Google Scholar

    [35] 罗芬-新纳技术公司. 激光成丝在透明材料中非烧蚀光声压缩加工的方法和装置: 中国, CN201410379877. 6[P]. 2015-02-11.

    Google Scholar

    Rofin Sinar Technologies Inc. Method and apparatus for non-ablative and/or photo acoustic compression machining a transparent target: China, CN201410379877. 6[P]. 2015-02-11.

    Google Scholar

    [36] 罗芬-新纳技术公司. 用于在透明材料内执行激光成丝的系统: 中国, CN201410380104. X[P]. 2015-02-11.

    Google Scholar

    Rofin Sinar Technologies Inc. System for performing laser filamentation within transparent materials: China, CN201410380104. X[P]. 2015-02-11.

    Google Scholar

    [37] 罗芬-新纳技术公司. 用于在透明材料内执行激光成丝的方法和设备: 中国, CN201410380147. 8[P]. 2015-02-11.

    Google Scholar

    Rofin Sinar Technologies Inc. Method and device for performing laser filamentation within transparent materials: China, CN201410380147. 8[P]. 2015-02-11.

    Google Scholar

    [38] Butkus S, GaiŽauskas E, Paipulas D, et al. Rapid microfabrication of transparent materials using filamented femtosecond laser pulses[J]. Applied Physics A, 114(1): 81–90. doi: 10.1007/s00339-013-8108-2

    CrossRef Google Scholar

    [39] Butkus S, Paipulas D, Viburys Ž, et al. Rapid microfabrication of transparent materials using a filamented beam of the IR femtosecond laser[J]. Proceedings of SPIE, 2014, 8972: 897216. doi: 10.1117/12.2038231

    CrossRef Google Scholar

    [40] Butkus S, Alesenkov A, Paipulas D, et al. Micromachining of transparent, semiconducting and metallic substrates using femtosecond laser beams[J]. Journal of Laser Micro/ Nanoengineering, 2016, 11(1): 81–86.

    Google Scholar

    [41] Liu Jun, Chen Xiaowei, Liu Jiansheng, et al. Spectrum reshaping and pulse self-compression in normally dispersive media with negatively chirped femtosecond pulses[J]. Optics Express, 2006, 14(2): 979–987. doi: 10.1364/OPEX.14.000979

    CrossRef Google Scholar

    [42] 冯柳宾, 鲁欣, 刘晓龙, 等.飞秒激光离焦抽运熔融石英产生超连续白光的实验研究[J].物理学报, 2012, 16(17): 174206–1–6.

    Google Scholar

    Feng Liubin, Lu Xin, Liu Xiaolong, et al. Off-focus generation of strong super-continuum emission in fused silica using high power femtosecond laser pulses[J]. Acta Physics Sinica, 2012, 16(17): 174206–1–6.

    Google Scholar

    [43] Varel H, Ashkenasi D, Rosenfeld A, et al. Micromachining of quartz with ultrashort laser pulses[J]. Applied Physics A, 1997, 65(4–5): 367–373. doi: 10.1007/s003390050593

    CrossRef Google Scholar

    [44] Watanabe W, Tamaki T, Itoh K. Filamentation in laser microprocessing and microwelding[J]. Proceedings of SPIE, 2007, 6733: 67332F. doi: 10.1117/12.753150

    CrossRef Google Scholar

    [45] Watanabe W, Onda S, Tamaki T, et al. Space-selective laser joining of dissimilar transparent materials using femtosecond laser pulses[J]. Applied Physics Letters, 2006, 89(2): 021106. doi: 10.1063/1.2221393

    CrossRef Google Scholar

    [46] Tamaki T, Watanabe W, Itoh K. Laser micro-welding of transparent materials by a localized heat accumulation effect using a femtosecond fiber laser at 1558 nm[J]. Optics Express, 2006, 14(22): 10460–10468. doi: 10.1364/OE.14.010460

    CrossRef Google Scholar

    [47] Yoshino F, Zhang Haibin, Arai A. Ultrashort pulse laser processing of transparent materials[J]. Journal of Laser Micro/Nanoengineering, 2009, 4(3): 212–217.

    Google Scholar

    [48] Courvoisier F, Stoian R, Couairon A. Ultrafast laser micro-and nano-processing with nondiffracting and curved beams: invited paper for the section: hot topics in ultrafast lasers[J]. Optics & Laser Technology, 2016, 80: 125–137.

    Google Scholar

    [49] Juodkazis S, Mizeikis V, GaiŽauskas E, et al. Studies of femtosecond pulse filamentation in glasses[J]. Proceedings of SPIE, 2006, 6053: 60530R.

    Google Scholar

    [50] 高慧, 赵佳宇, 刘伟伟.超快激光成丝现象的多丝控制[J].光学精密工程, 2013, 21(3): 598–607.

    Google Scholar

    Gao Hui, Zhao Jiayu, Liu Weiwei. Control of multiple filamentation induced by ultrafast laser pulses[J]. Optics and Precision Engineering, 2013, 21(3): 598–607.

    Google Scholar

    [51] Plat K, von Witzendorff P, Suttmann O, et al. Process strategy for drilling of chemically strengthened glass with picosecond laser radiation[J]. Journal of Laser Applications, 2016, 28(2): 022201. doi: 10.2351/1.4944508

    CrossRef Google Scholar

    [52] Galinis J, Tamošauskas G, Gražulevičiũtè I, et al. Filamentation and supercontinuum generation in solid-state dielectric media with picosecond laser pulses[J]. Physical Review A, 2015, 92(3): 033857. doi: 10.1103/PhysRevA.92.033857

    CrossRef Google Scholar

  • The research progress of ultrafast laser industrial application based on filamentation effect is introduced. Ultrafast laser filamentation is an attractive nonlinear phenomenon as a consequence of dynamic balance between Kerr self-focusing and defocusing effect in the electron plasma generated through the ionization process. It has been observed for various laser wavelengths from the ultraviolet to the infrared domain and for the pulse durations from several tenth of femtosecond to picosecond. The optical intensity in the filamentary volume can become high enough to induce permanent structural modifications which can be utilized in material processing with high precision and some special features. The basic characteristics and the theoretical modes of the filament propagation were described briefly for better understanding the effect. However, the main emphasis of the paper is on the laser industrial application from filamentation effect which is found as a promising and exploring research field in recent years. To achieve non-diffractive ultra-long transmission of filament propagation will play an important role in the development of the novel ultrafast laser material processing technology. From the physical feature, basic mechanism and characteristic advantages of filamentation effects, the representative research achievements on the laser applications of filamentation induced in gas, liquid and solid different media were presented. It is demonstrated that laser filamentation induced in gas provides high intensity plasma strings of micrometric diameters and lengths of tens of centimeters which can achieve remotely drilling, cutting and milling of metals, biological materials, ceramics and single crystal (sapphire). Complex 3D shapes can be machined without any adjustment of the technique because the processing is carried out under defocusing condition. Micromachining techniques of cutting and welding by water acting as a medium for filament formation were introduced afterwards. Filament formation in water leads to decrease of the focal spot diameter and increases of fluence and axial focal length, which is capable of drilling holes in thick soda-lime and hardened glasses, even for complex –shape fabrication. Filament formation at the interface of two glass samples was also used for welding applications. By varying repetition rate, scanning speed and focal position optimal conditions, strong glass welding via filamentation were obtained. The development problem and prospect of the technique were also considered and discussed. Ultrafast laser processing using filamentation must be a versatile technique in the future industrial material machining because the material modification is initiated by nonlinear absorption with the advantages which is quite different from common ablation.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Article Metrics

Article views(9262) PDF downloads(4128) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint