低信噪比的点像元增强算法

许振兴, 杨平, 许冰. 低信噪比的点像元增强算法[J]. 光电工程, 2017, 44(11): 1083-1088. doi: 10.3969/j.issn.1003-501X.2017.11.007
引用本文: 许振兴, 杨平, 许冰. 低信噪比的点像元增强算法[J]. 光电工程, 2017, 44(11): 1083-1088. doi: 10.3969/j.issn.1003-501X.2017.11.007
Zhenxing Xu, Ping Yang, Bing Xu. An enhancement algorithm for low signal noise ratio of point pixel[J]. Opto-Electronic Engineering, 2017, 44(11): 1083-1088. doi: 10.3969/j.issn.1003-501X.2017.11.007
Citation: Zhenxing Xu, Ping Yang, Bing Xu. An enhancement algorithm for low signal noise ratio of point pixel[J]. Opto-Electronic Engineering, 2017, 44(11): 1083-1088. doi: 10.3969/j.issn.1003-501X.2017.11.007

低信噪比的点像元增强算法

详细信息

An enhancement algorithm for low signal noise ratio of point pixel

More Information
  • 在对点像的探测中,无论采用空域还是时域处理,都只利用了点像元的部分信息,它们都具有一定的局限性。为此,本文提出一种融合多帧时空域滤波的点像元增强算法。首先利用改进后的Top-hat变换对多帧图像做空域处理,然后将具有较好频率分析优势的小波变换引入多帧图像中进行时域处理,最后利用联合分布概率把时空域两种处理方法所得到的灰度图进行融合。实验表明,增强后对具有空天背景的多帧图像平均灰度值和平均信噪比增益得到有效增强。

  • Abstract: Point pixel enhancement algorithm is an important preprocessing technique in automatic point recognition and detection systems. The point pixel in the image of the pixels are small, lacking information such as shape and texture, of low signal noise ratio, and easily submerged in the complex background, which is extremely unfavorable for subsequent extraction and detection. So point enhancement is necessary.

    In recent years, lots of papers have been published about the use of spatial domain or time domain on single-frame image enhancement method. Spatial domain is processed to achieve background prediction and the purpose of enhancing the point by filtering or spatial correlation, such as top-hat background suppression, local adaptive filtering and two-dimensional least mean square filtering method (TDLMS). At present, some researchers have proposed a background modeling of anisotropy method from the perspective of image "singularity" for large span background. And time domain processing mainly uses wavelet transform to realize point pixel enhancement, calculate the normalized correlation coefficient among the point pixel coefficient, the background edge coefficient and the noise figure, and enhance the point pixel by distinguishing the correlation coefficient difference, suppressing the background.

    The above-mentioned enhancement methods, whether they are spatial domain or time domain processing, use only part of the information of the point pixels. Thus they all have limitations: The spatial processing focuses on the use of gray features of the pixel, and the disadvantage is to ignore the point pixel like the continuity of gray in the time domain. The time domain processing focuses on the continuity of the point pixel gray scale in the time domain, but does not fully consider the gray-scale distribution of the point pixel in the spatial domain. The interference of the noise may introduce more false information. At present, the multi-frame point pixel enhancement method of joint space-time domain is paid more and more attention to. Based on the difference among the point pixel, the background and the noise in the space-time characteristics, we fully consider the spatial and temporal characteristics of the point pixel and uses the joint distribution probability to fuse the gray-scale graphs obtained by the two methods of space-time domain, to improve the image signal-to-noise ratio.

  • 加载中
  • 图 1  进的Top-hat变换结构元素.

    Figure 1.  Top-hat transform architecture.

    图 2  t时刻对图像相邻几帧进行时域滤波的流程图.

    Figure 2.  Flow chart of temporal filtering of adjacent frames in t time.

    图 3  时空域融合的点像元增强流程图.

    Figure 3.  Flow chart of target enhancement in temporal-spatialfusion.

    图 4  不同背景预测法得到的背景预测及背景抑制图. (a)原图像. (b) Top-hat背景预测及背景抑制. (c)形态学滤波背景预测及背景抑制. (d) TDLMS背景预测及背景抑制. (e)多尺度形态学背景预测及背景抑制. (f)本文方法背景预测及背景抑制.

    Figure 4.  Background prediction and background suppression obtained by different background prediction methods. (a) Background. (b) Top-hat background suppression and background prediction. (c) Morphological filter method. (d) TDLMS filter method. (e) Multiscale morphological filter method. (f) Applying our method.

    图 5  滤波处理结果图及对应的三维图. (a)原图像及对应的三维图. (b)空域滤波结果图. (c)时域滤波结果图. (d)时空域融合结果图.

    Figure 5.  The filtering result and 3D intensity image. (a) Original image. (b) Spatial filtering result. (c) Temporal filtering result. (d) Temporal-spatial-fusion result.

    表 1  5帧不同信噪比图像情况.

    Table 1.  5 signal to noise ratio of frame image.

    帧数12345
    信噪比1.731.961.851.821.60
    下载: 导出CSV

    表 2  各背景预测法MSE值比较.

    Table 2.  Comparison of MSE values in different background prediction methods.

    12345
    Top-hat[1]60.87956.13963.73262.84964.743
    形态学89.41885.07985.76584.76892.741
    TDLMS[10]58.96165.87570.15668.65679.322
    多尺度形态学8.20649.70113.49710.59312.622
    本文方法5.6538.03510.7128.43414.223
    下载: 导出CSV

    表 3  各背景预测方法值SSIM比较.

    Table 3.  Comparison of SSIM values in different background prediction methods.

    12345
    Top-hat[1]0.6750.7530.7450.7120.721
    形态学0.4940.5780.5270.5520.467
    TDLMS[10]0.7570.7850.7760.7680.723
    多尺度形态学0.9870.9150.9080.9010.906
    本文方法0.9930.9980.9950.9960.992
    下载: 导出CSV

    表 4  各背景预测方法GSNR值比较.

    Table 4.  Comparison of GSNR values in different background prediction methods.

    Top-hat[1]形态学TDLMS[10]多尺度形态学本文方法
    RGSNR4.5643.2235.7247.5328.675
    下载: 导出CSV

    表 5  对比分析累积前后的增强效果.

    Table 5.  Analysis before and after the cumulative effect.

    背景预测法 原图像 能量累积前(单帧) 能量累积后(多帧叠加)
    平均灰度 平均信噪比 平均灰度 平均信噪比 平均灰度 平均信噪比
    Top-hat[1] 132 1.03 156 1.53 167 1.63
    形态学 132 1.03 138 1.23 153 1.45
    TDLMS[7] 132 1.03 162 1.62 176 1.78
    多尺度形态学 132 1.03 168 1.64 195 1.83
    本文方法 132 1.03 179 1.78 200 2.02
    下载: 导出CSV

    表 6  对比分析时域处理前后的增强效果.

    Table 6.  Analysis before and after the time domain processing enhancement effect.

    算法时域处理前(原图)时域处理后
    平均灰度平均信噪比平均灰度平均信噪比
    小波变换1341.231542.47
    下载: 导出CSV

    表 7  对比分析不同算法与本文融合方法的增强效果.

    Table 7.  The enhancement effects of different algorithms and the proposed methods.

    算法增强处理前增强处理后
    平均灰度平均信噪比平均灰度平均信噪比
    文献[4]1341.231973.86
    文献[5]1341.232044.25
    本文融合方法1 341.232124.78
    下载: 导出CSV
  • [1]

    Bai Xiangzhi, Zhou Fugen. Infrared small target enhancement and detection based on modified top-hat transformations[J]. Computers and Electrical Engineering, 2010, 36(10): 1193‒1201. https://www.researchgate.net/publication/222383883_Infrared_small_target_enhancement_and_detection_based_on_modified_top-hat_transformations

    [2]

    张耀, 雍杨, 张启衡, 等.低对比度小目标检测[J].强激光与粒子束, 2010, 22(11): 2566‒2570. https://www.wenkuxiazai.com/doc/ac465d197cd184254b35356d.html

    Zhang Yao, Yong Yang, Zhang Qiheng, et al. Detection of dim point target with low contrast[J]. Laser and Particle Beams, 2010, 22(11): 2566‒2570. https://www.wenkuxiazai.com/doc/ac465d197cd184254b35356d.html

    [3]

    张路, 张志勇, 肖山竹, 等.基于多向背景预测的红外弱小目标检测[J].信号处理, 2010, 26(11): 1646‒1651. doi: 10.3969/j.issn.1003-0530.2010.11.008

    Zhang Lu, Zhang Zhiyong, Xiao Shanzhu, et al. Detection of dim infrared targets by multi-direction prediction of background[J]. Journal of Signal Processing, 2010, 26 (11): 1646‒1651. doi: 10.3969/j.issn.1003-0530.2010.11.008

    [4]

    Fan Xiangsuo, Xu Zhiyong, Zhang Jianlin, et al. Infrared dim and small targets detection method based on local energy center of sequential image[J]. Mathematical Problems in Engineering, 2017, 2007: 4572147. doi: 10.1155/2017/4572147.

    [5]

    景亮, 彭真明, 何艳敏, 等.各向异性SUSAN滤波红外弱小目标检测[J].强激光与粒子束, 2013, 25(9): 124‒129. http://industry.wanfangdata.com.cn/jt/Detail/Periodical?id=Periodical_qjgylzs201309008

    Jiang Liang, Peng Zhenming, He Yanmin, et al. Infrared dim target detection based on anisotropic SUSAN filtering[J]. High Power Laser and Particle Beams, 2013, 25(9): 124‒129. http://industry.wanfangdata.com.cn/jt/Detail/Periodical?id=Periodical_qjgylzs201309008

    [6]

    Fan Xiangsuo, Xu Zhiyong, Zhang Jianlin, et al. Dim small targets detection based on self-adaptive caliber temporal-spatial filtering[J]. Infrared Physics & Technology, 2017, 85: 465‒477. https://www.sciencedirect.com/science/article/pii/S1350449517300786

    [7]

    荣健, 申金娥, 钟晓春.基于小波和SVR的红外弱小目标检测方法[J].西南交通大学学报, 2008, 43(5): 555‒560. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xnjt200805002&dbname=CJFD&dbcode=CJFQ

    Rong Jian, Shen Jine, Zhong Xiaochun. New method for infrared dim target detection based on wavelet and SVR[J]. Journal of Southwest Jiaotong University, 2008, 43(5): 555‒560. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=xnjt200805002&dbname=CJFD&dbcode=CJFQ

    [8]

    Liu Gang, Liang Xiaogeng. Detection of aerial small target in infrared image based on wavelet transform and pipe-line filter[J]. Computer Engineering and Applications, 2011, 47(30): 198‒201.

    [9]

    李大伟. 复杂背景下红外弱小目标检测[D]. 哈尔滨: 哈尔滨工业大学, 2013.

    Li Dawei. Small dim targets detection in infrared video with complex background [D]. Harbin: Harbin Institute of Technology, 2013.

    [10]

    Bae T W, Kim Y C, Ahn S H, et al. An efficient two-dimensional least mean square (TDLMS) based on block statistics for small target detection[J]. Journal of Infrared, Millimeter, and Tera-hertz Waves, 2009, 30(10): 1092–1101. doi: 10.1007/s10762-009-9530-6

    [11]

    佟雨兵, 张其善, 祁云平, 等.基于PSNR与SSIM联合的图像质量评价模型[J].中国图象图形学报, 2010, 11(12): 1758–1763. http://doi.wanfangdata.com.cn/10.3969/j.issn.1006-8961.2006.12.003

    Tong Yubing, Zhang Qishan, Qi Yunping, et al. Image quality assessing by combining PSNR with SSIM[J]. Chinese Journal of Image and Graphics, 2010, 11(12): 1758–1763. http://doi.wanfangdata.com.cn/10.3969/j.issn.1006-8961.2006.12.003

    [12]

    Wang Zhou, Bovik A C, Sheikh H R, et al. Image quality as-sessment: from error visibility to structural similarity[J]. IEEE Transactions on Image Processing, 2004, 13(4): 600–612.

    [13]

    曹琦, 毕笃彦.红外弱小目标检测中的特征选择性滤波方法[J].光学学报, 2011, 29(9): 2048‒2412. http://d.wanfangdata.com.cn/Periodical_gxxb200909012.aspx

    Cao Qi, Bi Duyan. Characteristic-selecting filtering in infrared small target detection[J]. Acta Optica Sinica, 2011, 29(9): 2048–2412. http://d.wanfangdata.com.cn/Periodical_gxxb200909012.aspx

  • 加载中

(5)

(7)

计量
  • 文章访问数:  5977
  • PDF下载数:  3471
  • 施引文献:  0
出版历程
收稿日期:  2017-07-14
修回日期:  2017-10-15
刊出日期:  2017-11-15

目录

/

返回文章
返回