太赫兹时域光谱技术的参数提取及其误差分析

侯春鹤, 朱运东, 李丽娟, 等. 太赫兹时域光谱技术的参数提取及其误差分析[J]. 光电工程, 2018, 45(2): 170534. doi: 10.12086/oee.2018.170534
引用本文: 侯春鹤, 朱运东, 李丽娟, 等. 太赫兹时域光谱技术的参数提取及其误差分析[J]. 光电工程, 2018, 45(2): 170534. doi: 10.12086/oee.2018.170534
Hou Chunhe, Zhu Yundong, Li Lijuan, et al. Optical parameter extraction and error analysis of terahertz time domain spectrum detection[J]. Opto-Electronic Engineering, 2018, 45(2): 170534. doi: 10.12086/oee.2018.170534
Citation: Hou Chunhe, Zhu Yundong, Li Lijuan, et al. Optical parameter extraction and error analysis of terahertz time domain spectrum detection[J]. Opto-Electronic Engineering, 2018, 45(2): 170534. doi: 10.12086/oee.2018.170534

太赫兹时域光谱技术的参数提取及其误差分析

  • 基金项目:
    国家高科技研究发展计划项目(2015AA6036A);国防技术基础科研项目(JSZL2015411C002)
详细信息
    作者简介:
    通讯作者: 李丽娟(1972-),女,博士,教授,主要从事数字化装配、无损检测新技术的研究。E-mail:custjuan@126.com
  • 中图分类号: TP207

Optical parameter extraction and error analysis of terahertz time domain spectrum detection

  • Fund Project: Supported by National High Technology Research and Development Program(2015AA6036A) and Defense Technology Basic Research(JSZL2015411C002)
More Information
  • 太赫兹时域光谱技术(THz-TDS)是通过分析携带介质信息(如振幅和相位等)的宽频带太赫兹脉冲,从而对材料内部信息进行提取的一种光谱检测方法。实验应用透射式的检测方式,对陶瓷基复合材料和硅胶材料进行检测。建立材料光学参数模型,提取了折射率和吸收系数的值,并绘制了折射率和吸收系数随频率变化的曲线图。结果显示,密度不同的陶瓷基复合材料的折射率各自稳定于常数1.11、1.14、1.16,厚度不同的硅胶的折射率为2.10,且折射率曲线不存在频率依赖性;而吸收系数对频率依赖性较强,但对于材料特性不同的样品的吸收明显不同。基于高斯误差理论,对实验中出现的系统误差进行数学识别与建模,分析了密度为2.8 g/cm3的陶瓷基复合材料光学参数的几种误差源的传播过程。折射率的标准差趋于平稳,吸收系数的标准差随频率变化明显,且标准差均在0.001量级,这对折射率和吸收系数等物理量的精确提取具有较大的意义。

  • Overview: Terahertz time-domain spectroscopy (THz-TDS) is a spectral detection method. The information of the material is measured through the broadband terahertz pulse carrying the medium information (such as amplitude and phase). The ceramic matrix composites and silica gel materials were tested with the detection method of transmission. The optical parametric models of the material were established, and the values of the refractive index and the absorption coefficient were extracted. The curves of the refractive index and the absorption coefficient with frequency were plotted. The refractive index of the ceramic matrix composites with different density are respectively convergent to a constant of 1.11, 1.14 and 1.16, and the refractive index of silica gel with different thickness is 2.1, which is not dependent to frequency. While the frequency dependence of the absorption coefficient is evident, and the absorption of samples with different material properties is significantly different. Based on the Gaussian error theory, the errors of the optical parameters are simulated and modeled. The experimental results show that there are several error sources in the optical parameters of the ceramic matrix composites with density of 2.8 g/cm3. The standard deviation of the refractive index and the absorption coefficient are obviously related to the frequency, and the standard deviation is in the order of 0.001, which is of great significance to the precise extraction of the physical parameters such as the refractive index and the absorption coefficient.

  • 加载中
  • 图 1  透射式THz时域光谱测量系统

    Figure 1.  Transmission THz time-domain spectrum detection system

    图 2  陶瓷基复合材料(a)和硅胶(b)

    Figure 2.  Ceramic catrix composites materials (a) and silica cel materials (b)

    图 3  陶瓷基复合材料。(a)折射率;(b)吸收系数

    Figure 3.  Ceramic catrix composites materials. (a) Refractive index; (b) Absorption coefficient

    图 4  硅胶材料。(a)折射率;(b)吸收系数

    Figure 4.  Silica cel materials. (a) Refractive index; (b) Absorption coefficient

    图 5  陶瓷基复合材料。(a)振幅误差;(b)折射率标准差;(c)吸收系数的标准差

    Figure 5.  Ceramic catrix composites materials. (a) Amplitude error; (b) The standard deviation of the refractive index; (c) The standard deviation of the absorption coefficient

    图 6  受噪声影响的光学常数的标准偏差。(a) n标准化标准偏差; (b) α标准化标准偏差

    Figure 6.  The standard deviation of optical parameters from noise impact. (a) The standard deviation of n; (b) The standard deviation of α

    图 7  受延迟线影响的光学常数的标准偏差。(a) n标准化标准偏差; (b) α标准化标准偏差

    Figure 7.  The standard deviation of optical parameters from delay line. (a) The standard deviation of n; (b) The standard deviation of α

    表 1  物理参数

    Table 1.  Physical parameter

    材料类型 厚度/mm 密度/(g/cm3) 样品名称
    硅胶 0.8 sample1
    2 sample2
    陶瓷基复合材料 30 2.5 sample3
    30 2.8 sample4
    30 3.3 sample5
    下载: 导出CSV
  • [1]

    Tripathi S R, Aoki M, Mochizuki K, et al. Practical method to estimate the standard deviation in absorption coefficients measured with THz time-domain spectroscopy[J]. Optics Communications, 2010, 283(12): 2488-2491. doi: 10.1016/j.optcom.2010.02.008

    [2]

    Sakai K. Terahertz Optoelectronics[M]. Berlin, Heidelberg: Springer, 2005.

    [3]

    Dexheimer S L. Terahertz Spectroscopy: Principles and Applications[M]. New York: Cambridge University Press, 2007: 198-209.

    [4]

    Woolard D L, Loerop W R, Shur M S. Terahertz Sensing Technology: Volume 2: Emerging Scientific Applications and Novel Device Concepts[M]. Singapore: World Scientific, 2004.

    [5]

    Naito K, Kagawa Y, Utsuno S, et al. Dielectric properties of woven fabric glass fiber reinforced polymer-matrix composites in the THz frequency range[J]. Composites Science and Technology, 2009, 69(11-12): 2027-2029. doi: 10.1016/j.compscitech.2009.04.001

    [6]

    Tian L, Zhao K, Zhou Q L, et al. Optical parameters of zinc dialkyldithiophosphate in terahertz regime[J]. Optik -International Journal for Light and Electron Optics, 2013, 124(6): 554-556. doi: 10.1016/j.ijleo.2011.12.028

    [7]

    Razanoelina M, Kinjo R, Takayama K, et al. Parallel-plate waveguide terahertz time domain spectroscopy for ultrathin conductive films[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(12): 1182-1194. doi: 10.1007/s10762-015-0194-0

    [8]

    杨晓杰, 李向军, 刘建军.石英玻璃太赫兹光学参数测量的误差分析[J].红外与激光工程, 2015, 44(6): 1827-1831. http://www.cqvip.com/QK/91846X/201506/665211790.html

    Yang X J, Li X J, Liu J J. Error analysis of quartz glass terahertz optical parameter measurement[J]. Infrared and Laser Engineering, 2015, 44(6): 1827-1831. http://www.cqvip.com/QK/91846X/201506/665211790.html

    [9]

    Fornies-Marquina J M, Letosa J, Garcia-Gracia M, et al. Error propagation for the transformation of time domain into frequency domain[J]. IEEE Transactions on Magnetics, 1997, 33(2): 1456-1459. doi: 10.1109/20.582534

    [10]

    Krüger M, Funkner S, Bründermann E, et al. Uncertainty and ambiguity in Terahertz parameter extraction and data analysis[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2011, 32(5): 699-715. doi: 10.1007/s10762-010-9669-1

    [11]

    Lin H, Mickan S P, Fischer B M, et al. Analysis of measurement uncertainty in THz-TDS[J]. Proceedings of SPIE, 2007, 6593: 659326. doi: 10.1117/12.721876

    [12]

    Duvillaret L, Garet F, Coutaz J L. Influence of noise on the characterization of materials by terahertz time-domain spectroscopy[J]. Journal of the Optical Society of America B, 2000, 17(3): 452-461. doi: 10.1364/JOSAB.17.000452

    [13]

    Unferdorben M, Szaller Z, Hajdara I, et al. Measurement of refractive index and absorption coefficient of congruent and stoichiometric lithium niobate in the Terahertz range[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2015, 36(12): 1203-1209. doi: 10.1007/s10762-015-0165-5

    [14]

    Jepsen P U, Fischer B M. Dynamic range in terahertz time-domain transmission and reflection spectroscopy[J]. Optics Letters, 2005, 30(1): 29-31. doi: 10.1364/OL.30.000029

    [15]

    Wilke I, Ramanathan V, Lachance J, et al. Characterization of the terahertz frequency optical constants of montmorillonite[J]. Applied Clay Science, 2014, 87: 61-65. doi: 10.1016/j.clay.2013.11.006

  • 加载中

(7)

(1)

计量
  • 文章访问数:  8303
  • PDF下载数:  3245
  • 施引文献:  0
出版历程
收稿日期:  2017-10-09
修回日期:  2018-01-10
刊出日期:  2018-02-22

目录

/

返回文章
返回