Jiang Wenhan. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 170489. doi: 10.12086/oee.2018.170489
Citation: Jiang Wenhan. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 170489. doi: 10.12086/oee.2018.170489

Overview of adaptive optics development

More Information
  • Adaptive optics (AO) is the technology for correcting the dynamic optical wavefront errors. This article reviews the development process of AO in recent 50 years including: the first stage of development, progresses of United States in the period of "Star War", and the applications of AO in the fields of high resolution imaging of ground-based telescopes, laser systems, especially for inertial confinement fusion (ICF), and ophthalmology. Moreover the development trends of AO are also presented. For each technical innovation, the first published paper of the innovator is cited as far as possible. Giving a development skeleton of AO is the purpose of this paper.
  • 加载中
  • [1] 牛顿.光学[M].北京:北京大学出版社, 2007.

    Google Scholar

    [2] Babcock H W. The possibility of compensating astronomical seeing[J]. Publications of the Astronomical Society of the Pacific, 1953, 65(386): 229–236.

    Google Scholar

    [3] Linnik V P. On the possibility of reducing the influence of atmospheric seeing on the image quality of stars[J]. Optics and Spectroscopy (in Russian), 1957, 3. English translation, 401-402. CO-16 Satellite Conference on Active and Adaptive Optics, ESO Proc. 48, 1993: 535–538.http://adsabs.harvard.edu/abs/1994ESOC...48..535L

    Google Scholar

    [4] Fried D. L. edited Special issue on adaptive optics[J]. JOSA, 1977, 67(3).

    Google Scholar

    [5] Hardy J W. Active optics: A new technology for the control of light[J]. Proceedings of the IEEE, 1978, 66(6): 651–697. doi: 10.1109/PROC.1978.10992

    CrossRef Google Scholar

    [6] Special issue on adaptive optics[J]. Lincoln Laboratory Journal, 1992, 5(1): 170.

    Google Scholar

    [7] Fried D L. Limiting resolution looking down through the atmosphere[J]. Journal of the Optical Society of America, 1966, 56(10): 1380–1384. doi: 10.1364/JOSA.56.001380

    CrossRef Google Scholar

    [8] Greenwood D P. Bandwidth specification for adaptive optics systems[J]. Journal of the Optical Society of America, 1977, 67(3): 390–393. doi: 10.1364/JOSA.67.000390

    CrossRef Google Scholar

    [9] Fried D L. Anisoplanatism in adaptive optics[J]. Journal of the Optical Society of America, 1982, 72(1): 52–61. doi: 10.1364/JOSA.72.000052

    CrossRef Google Scholar

    [10] Murphy D V. Atmospheric-turbulence compensation experiments using cooperative beacons[J]. The Lincoln Laboratory Journal, 1992, 5(1): 25–44.

    Google Scholar

    [11] Murphy D V, Primmerman C A, Zollars B G, et al. Experimental demonstration of atmospheric compensation using multiple synthetic beacons[J]. Optics Letters, 1991, 16(22): 1797–1799. doi: 10.1364/OL.16.001797

    CrossRef Google Scholar

    [12] Fugate R Q, Fried D L, Ameer G A, et al. Measurement of atmospheric wavefront distortion using scattered light from a laser guide-star[J]. Nature, 1991, 353(6340): 144–146. doi: 10.1038/353144a0

    CrossRef Google Scholar

    [13] Primmerman C A, Fouche D G. Thermal-blooming compensation: experimental observations using a deformable-mirror system[J]. Applied Optics, 1976, 15(4): 990–995. doi: 10.1364/AO.15.000990

    CrossRef Google Scholar

    [14] Schonfeld J F. The theory of compensated laser propagation through strong thermal blooming[J]. The Lincoln Laboratory Journal, 1992, 5(1): 131–150.

    Google Scholar

    [15] Foy R, Labeyrie A. Feasibility of adaptive telescope with laser probe[J]. Astronomy and Astrophysics, 1985, 152(2): L29–L31.

    Google Scholar

    [16] Humphreys R A, Bradley L C, Herrmann J. Sodium-layer synthetic beacons for adaptive optics[J]. The Lincoln Laboratory Journal, 1992, 5(1): 45–66.

    Google Scholar

    [17] Hardy J W, Lefebvre J E, Koliopoulos C L. Real-time atmospheric compensation[J]. Journal of the Optical Society of America, 1977, 67(3): 360–369. doi: 10.1364/JOSA.67.000360

    CrossRef Google Scholar

    [18] Hardy J W. Adaptive Optics for Astronomical Telescopes[M]. Oxford: Oxford University Press, 1998.

    Google Scholar

    [19] Hardy J W. Twenty years of active and adaptive optics[C]// ICO-16 Satellite Conference on Active and Adaptive Optics, 1993, 48: 29–34.http://adsabs.harvard.edu/abs/1994ESOC...48...29H

    Google Scholar

    [20] Kern P, Merkle F, Gaffard J P, et al. Prototype of an adaptive optical system for astronomical observation[J]. Proceedings of SPIE, 1988, 860: 9–16. doi: 10.1117/12.943379

    CrossRef Google Scholar

    [21] Merkle F, Rousset G, Kern P Y, et al. First diffraction-limited astronomical images with adaptive optics[J]. Proceedings of SPIE, 1990, 1236: 193–203. doi: 10.1117/12.19189

    CrossRef Google Scholar

    [22] Roddier F. Curvature sensing and compensation: a new concept in adaptive optics[J]. Applied Optics, 1988, 27(7): 1223–1225. doi: 10.1364/AO.27.001223

    CrossRef Google Scholar

    [23] Ellerbroek B, Britton M, Dekany R, et al. Adaptive optics for the thirty meter telescope[J]. Proceedings of SPIE, 2005, 5903: 590304. doi: 10.1117/12.619915

    CrossRef Google Scholar

    [24] Vernin J, Muñoz-Tuñón C, Sarazin M, et al. European extremely large telescope site characterization Ⅰ: Overview[J]. Publications of the Astronomical Society of the Pacific, 2011, 123(909): 1334–1346. doi: 10.1086/662995

    CrossRef Google Scholar

    [25] GMT Project. Giant magellan telescope conceptual design review[EB/OL]. http://www.gmto.org, 2006.

    Google Scholar

    [26] Fugate R Q. The starfire optical range 3.5-m adaptive optical telescope[J]. Proceedings of SPIE, 2003, 4837: 934–944. doi: 10.1117/12.457972

    CrossRef Google Scholar

    [27] Acton D S, Dunn R B. Solar imaging at national solar observatory using a segmented adaptive optics system[J]. Proceedings of SPIE, 1993, 1920: 348–353. doi: 10.1117/12.152680

    CrossRef Google Scholar

    [28] 姜文汉, 张雨东, 饶长辉, 等.中国科学院光电技术研究所的自适应光学研究进展[J].光学学报, 2011, 31(9): 900106.

    Google Scholar

    Jiang W H, Zhang Y D, Rao C H, et al. Progress on adaptive optics of Institute of Optics and Electronics, Chinese Academy of Sciences[J]. Acta Optica Sinica, 2011, 31(9): 900106.

    Google Scholar

    [29] 凌宁.多元整体压电变形反射镜(研究阶段进展报告)[J].光电工程, 1982, 9(6): 43–52.

    Google Scholar

    [30] Jiang W H, Li M G, Tang G M, et al. Adaptive optical image compensation experiments on stellar objects[J]. Optical Engineering, 1995, 34(1): 15–21. doi: 10.1117/12.184078

    CrossRef Google Scholar

    [31] 饶长辉, 姜文汉, 张雨东, 等.云南天文台1.2 m望远镜61单元自适应光学系统[J].量子电子学报, 2006, 23(3): 295–302.

    Google Scholar

    Rao C H, Jiang W H, Zhang Y D, et al. 61-element adaptive optical system for 1.2 m telescope of Yunnan Observatory[J]. Chinese Journal of Quantum Electronics, 2006, 23(3): 295–302.

    Google Scholar

    [32] Rao C H, Wei K, Zhang X J, et al. First observations on the 127-element adaptive optical system for 1.8 m telescope[J]. Proceedings of SPIE, 2008, 7654: 76541H.

    Google Scholar

    [33] Wei K, Bo Y, Xue X H, et al. Photon returns test of the pulsed sodium guide star laser on the 1.8 meter telescope[J]. Proceedings of SPIE, 2012, 8447: 84471R. doi: 10.1117/12.925641

    CrossRef Google Scholar

    [34] Wei K, Li M, Chen S Q, et al. First light for the sodium laser guide star adaptive optics system on the Lijiang 1.8 m telescope[J]. Research in Astronomy and Astrophysics, 2016, 16(12): 183. doi: 10.1088/1674-4527/16/12/183

    CrossRef Google Scholar

    [35] Jin K, Wei K, Feng L, et al. Photon return on-sky test of pulsed sodium laser guide star with D2b repumping[J]. Publications of the Astronomical Society of the Pacific, 2015, 127(954): 749–756. doi: 10.1086/682672

    CrossRef Google Scholar

    [36] Rao C H, Jiang W H, Fang C, et al. A tilt-correction adaptive optical system for the solar telescope of Nanjing University[J]. Research in Astronomy and Astrophysics, 2003, 3(6): 576–586.

    Google Scholar

    [37] Rao C H, Zhu L, Rao X J, et al. Instrument description and performance evaluation of a high-order adaptive optics system for the 1 m new vacuum solar telescope at Fuxian solar observatory[J]. The Astrophysical Journal, 2016, 833(2): 210. doi: 10.3847/1538-4357/833/2/210

    CrossRef Google Scholar

    [38] Liu C, Chen M, Chen S Q, et al. Adaptive optics for the free-space coherent optical communications[J]. Optics Communications, 2016, 361: 21–24. doi: 10.1016/j.optcom.2015.10.033

    CrossRef Google Scholar

    [39] 周仁忠, 阎吉祥.自适应光学理论[M].北京:北京理工大学出版社, 1996.

    Google Scholar

    [40] 周仁忠, 阎吉祥, 俞信, 等.自适应光学[M].北京:国防工业出版社, 1996.

    Google Scholar

    [41] Jiang W H, Huang S F, Ling N, et al. Hill-climbing wavefront correction system for large laser engineering[J]. Proceedings of SPIE, 1989, 965: 266–273. doi: 10.1117/12.948042

    CrossRef Google Scholar

    [42] Salmon J T, Bliss E S, Byrd J L, et al. An adaptive optics system for solid-state laser systems used in inertial confinement fusion[R]. Monterey, CA: Office of Scientific & Technical Information Technical Reports LLNL, 1995.http://digital.library.unt.edu/ark:/67531/metadc625340/

    Google Scholar

    [43] Liang J Z, Williams D R, Miller D T. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. Journal of the Optical Society of America A, 1997, 14(11): 2884–2892. doi: 10.1364/JOSAA.14.002884

    CrossRef Google Scholar

    [44] Roorda A, Williams D R. The arrangement of the three cone classes in the living human eye[J]. Nature, 1999, 397(6719): 520–522. doi: 10.1038/17383

    CrossRef Google Scholar

    [45] 凌宁, 张雨东, 饶学军, 等.用于活体人眼视网膜观察的自适应光学成像系统[J].光学学报, 2004, 24(9): 1153–1158.

    Google Scholar

    Ling N, Zhang Y D, Rao X J, et al. A small adaptive optical imaging system for cells of living human retina[J]. Acta Optica Sinica, 2004, 24(9): 1153–1158.

    Google Scholar

    [46] Shi G H, Dai Y, Wang L, et al. Adaptive optics optical coherence tomography for retina imaging[J]. Chinese Optic Letters, 2008, 6(6): 424–425. doi: 10.3788/COL

    CrossRef Google Scholar

    [47] 何毅, 张雨东, 卢婧, 等.超分辨率活体人眼视网膜共焦扫描成像系统[J].物理学报, 2011, 60(3): 034207.

    Google Scholar

    He Y, Zhang Y D, Lu J, et al. Superresolution in adaptive optics confocal scanning laser ophthalmoscope[J]. Acta Physica Sinica, 2011, 60(3): 034207.

    Google Scholar

    [48] Liu R, Zhou J W, Zhao H X, et al. Immature visual neural system in children reflected by contrast sensitivity with adaptive optics correction[J]. Scientific Reports, 2014, 4: 4687.

    Google Scholar

    [49] Macintosh B A, Graham J R, Palmer D W, et al. The Gemini Planet Imager: from science to design to construction[J]. Proceedings of SPIE, 2008, 7015: 701518. doi: 10.1117/12.788083

    CrossRef Google Scholar

    [50] Beuzit J L, Feldt M, Dohlen K, et al. A 'Planet Finder' instrument for the VLT[J]. Proceedings of the International Astronomical Union, 2005, 1(C200): 317–322. doi: 10.1017/S1743921306009537

    CrossRef Google Scholar

    [51] Fusco T, Sauvage J F, Petit C, et al. Final performance and lesson-learned of SAXO, the VLT-SPHERE extreme AO: from early design to on-sky results[J]. Proceedings of SPIE, 2014, 9148: 91481U. doi: 10.1117/12.2055423

    CrossRef Google Scholar

    [52] Macintosh B, Graham J R, Ingraham P, et al. First light of the Gemini Planet imager[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(35): 12661–12666. doi: 10.1073/pnas.1304215111

    CrossRef Google Scholar

    [53] Ning Y, Jiang W H, Ling N, et al. Response function calculation and sensitivity comparison analysis of various bimorph deformable mirrors[J]. Optics Express, 2007, 15(19): 12030–12038. doi: 10.1364/OE.15.012030

    CrossRef Google Scholar

    [54] Bifano T G, Perreault J A, Bierden P A. Micromachined deformable mirror for optical wavefront compensation[J]. Proceedings of SPIE, 2000, 4124: 7–15. doi: 10.1117/12.407508

    CrossRef Google Scholar

    [55] Rooms F, Camet S, Charton J, et al. A new deformable mirror and experimental setup for free-space optical communication[J]. Proceedings of SPIE, 2009, 7199: 71990.

    Google Scholar

    [56] Love G D. Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator[J]. Applied Optics, 1997, 36(7): 1517–1524. doi: 10.1364/AO.36.001517

    CrossRef Google Scholar

    [57] 蔡冬梅, 姚军, 姜文汉.液晶空间光调制器用于波前校正的性能[J].光学学报, 2009, 29(2): 285–291.

    Google Scholar

    Cai D M, Yao J, Jiang W H. Performance of liquid-crystal spatial light modulator using for wave-front correction[J]. Acta Optica Sinica, 2009, 29(2): 285–291.

    Google Scholar

    [58] Guo Y M, Zhang A A, Fan X L, et al. First on-sky demonstration of the piezoelectric adaptive secondary mirror[J]. Optics Letters, 2016, 41(24): 5712–5715. doi: 10.1364/OL.41.005712

    CrossRef Google Scholar

    [59] Vorontsov M A, Carhart G W, Ricklin J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 1997, 22(12): 907–909. doi: 10.1364/OL.22.000907

    CrossRef Google Scholar

    [60] Yang H Z, Li X Y, Jiang W H. High resolution imaging of phase-distorted extended object using SPGD algorithm and deformable mirror[J]. Proceedings of SPIE, 2007, 6834: 683411. doi: 10.1117/12.754993

    CrossRef Google Scholar

    [61] Booth M J, Neil M A, Juskaitis R, et al. Adaptive aberration correction in a confocal microscope[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(9): 5788–5792. doi: 10.1073/pnas.082544799

    CrossRef Google Scholar

    [62] Wang J X, Bai F Z, Ning Y, et al. Wavefront response matrix for closed-loop adaptive optics system based on non-modulation pyramid wavefront sensor[J]. Optics Communications, 2012, 285(12): 2814–2820. doi: 10.1016/j.optcom.2012.02.026

    CrossRef Google Scholar

    [63] Wang S Q, Wei K, Zheng W J, et al. First light on an adaptive optics system using a non-modulation pyramid wavefront sensor for a 1.8 m telescope[J]. Chinese Optics Letters, 2016, 14(10): 100101. doi: 10.3788/COL

    CrossRef Google Scholar

  • Overview: Adaptive optics (AO) is the technology for correcting the dynamic optical wavefront errors. This article reviews the development process of AO in recent 50 years. Giving a development skeleton of AO is the purpose of this paper. The original ideas of Adaptive Optics were proposed by American astronomer H. W. Babcock in 1953, and Soviet astronomer V. P Linnik in 1957. At that time, there were no technical basics for realizing the proposes. Until late of the 60th decade of 20th century ARPA of US initiated to support fundamental researches of AO, the first papers of AO were published in 1997. In the period of Strategy Defense Initiatives(SDI),since 1985 AO had its booming period, many innovations appeared, including: the theory of atmosphere turbulence and its correction, high resolution imaging of satellites, laser guide star, laser propagation through atmosphere and thermal blooming. From the 90th decade of 20th century, The applications of AO in different areas were expanded quickly. High resolution imaging of astronomical objects is firstly realized by the Come-On project of European Southern Observatory (ESO). Now AO becomes the standard configuration of large astronomical telescopes. Three giant optical telescopes of 30~50 meters are being constructed. In each of these projects, sophisticated AO systems with large scale wavefront correctors, wavefront sensors and constellation of laser guide stars are being developed. Ground based imaging of satellites is another important application of AO. The Air Force of US constructed two AO telescope with 3.6 meters mirror. In 1986 the first solar AO system was used for high resolution observation of the surface structure of the Sun. Correction of wavefront errors in large laser system such as Inertial Confinement Fusion (ICF) is another important application of AO. The first AO system used in ICF was realized in China in 1985. Since then, many AO systems were developed in ICF facilities in China and LLNL of US. The first AO system for civilian use was the retinal imaging of human eye in 1997 by Rochester University. The developing trends of AO are briefly reviewed in this paper, including expanding the correction field of AO system by Multi-layer Conjugation AO (MCAO) using constellation of laser guide stars, extreme AO for elimination the halo around the core of the corrected point spread function (PSF), miniaturization of AO system by using miniaturizing the wavefront correctors and sensors. In every section of the paper, the developments of AO in China, especially in Institute of Optics and Electronics (IOE), are also included. For each technical innovation, the first published paper of the innovator is cited as far as possible.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(15)

Tables(4)

Article Metrics

Article views(31186) PDF downloads(8432) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint