光学系统仿真软件Seelight在自适应光学上的应用

孙全, 吕品, 宁禹, 等. 光学系统仿真软件Seelight在自适应光学上的应用[J]. 光电工程, 2018, 45(3): 180077. doi: 10.12086/oee.2018.180077
引用本文: 孙全, 吕品, 宁禹, 等. 光学系统仿真软件Seelight在自适应光学上的应用[J]. 光电工程, 2018, 45(3): 180077. doi: 10.12086/oee.2018.180077
Sun Quan, Lv Pin, Ning Yu, et al. Application of optical system simulation software Seelight in adaptive optics[J]. Opto-Electronic Engineering, 2018, 45(3): 180077. doi: 10.12086/oee.2018.180077
Citation: Sun Quan, Lv Pin, Ning Yu, et al. Application of optical system simulation software Seelight in adaptive optics[J]. Opto-Electronic Engineering, 2018, 45(3): 180077. doi: 10.12086/oee.2018.180077

光学系统仿真软件Seelight在自适应光学上的应用

  • 基金项目:
    国家自然科学基金资助项目(6150527)
详细信息
    作者简介:
    通讯作者: 宁禹(1979-),女,博士,副研究员,主要从事自适应光学和空间光学的研究。E-mail:ningyu_0205@126.com
  • 中图分类号: O436; O439

Application of optical system simulation software Seelight in adaptive optics

  • Fund Project: Supported by National Natural Science Foundation of China (6150527)
More Information
  • 光学系统仿真软件Seelight是一款可以模拟光束产生、大气传输与自适应光束控制等光学系统的具有自主知识产权的系统仿真软件,为光学系统应用研究提供了有效的仿真工具。本文首先介绍了Seelight软件的基本构架、运行界面和主要模型库包含的模块,并利用自适应光学相关的基本模型搭建了自适应光学仿真系统,模拟了PZT变形镜模块和哈特曼波前波传感器模块构成自适应光学仿真系统通过校正光束大气传输的波前畸变来提高远场光斑的光束质量的过程。验证了在不同的湍流强度下,自适应光学仿真系统的校正效果随着湍流强度的增加,校正残差大幅增加。利用Seelight软件可以对包含自适应光学系统的各种光学系统进行仿真建模,并可以对系统进行有效的验证分析和优化设计。

  • Overview: Beam propagation and adaptive optics are two of the most important technical problems in the application of modern high energy laser systems. Numerical simulation is an effective method for studying beam atmospheric transmission and adaptive optics correction. Many researches on numerical simulation in this field were carried out in and abroad, most of which are with the simulation programs of the beam atmospheric transmission and adaptive optics system correction. We also developed an optical system simulation software Seelight which can simulate beam generation, atmospheric transmission and adaptive beam control. The software provides an effective simulation tool for the application fields of optical system. The Seelight software is based on the basic principles of wave optics theory and computer simulation, and realizes the construction and design of optical simulation system by means of the graphical interface, which is "what you see is what you get". The software has seven core model libraries, including the source library, the target library, the detector library, the beam propagation library, the control library, the optics device library and the auxiliary library. Each sub-library contains several main modules with independent functions or representative devices. Using the PZT deformation mirror module and the Hartmann wavefront sensor module to build basic adaptive optics simulation systems, which was used to correct the wavefront aberration due to beam propagation through atmosphere. The linear number of the actuators of PZT deformable mirror is 9 and the linear number of the subapertures of Hartmann wavefront sensor is 8. With the adaptive optics system closed-loop control, the beam quality of the far field calculated by CCD camera was improved from 2.9 to 1.4 times of the diffraction limit. A simulation system was built with a 4 km horizontal atmospheric propagation path which included an adaptive optics system. The parameters of the adaptive optics system were exactly the same as those shown in the previous illustration. The correction effect of adaptive optics simulation system was verified under different turbulence intensities which were represented by r0 values from 3 cm to 18 cm @1064 nm wavelength, and it was clear that correction residual errors greatly increased with the increasing of turbulence intensity. The simulation results showed consistent with the trend of the fitting curve according to the theoretical formula in the reference. The Seelight software can be used to simulate various optical systems including adaptive optics system, and the system can be validated and optimized.

  • 加载中
  • 图 1  仿真系统的图形化操作界面

    Figure 1.  The graphical operation interface of the simulation system

    图 2  仿真系统的模型库构成

    Figure 2.  The model libraries of simulation system

    图 3  (a) 自适应光学系统原理图;(b)自适应光学仿真系统模型示意图

    Figure 3.  (a) Schematic diagram of adaptive optics; (b) Model diagram of adaptive optics simulation system

    图 4  哈特曼波前探测器模块参数设置界面

    Figure 4.  The parameters setting interface of Hartmann wavefront sensor

    图 5  PZT变形镜模块参数设置界面

    Figure 5.  The parameters setting interface of PZT deformable mirror

    图 6  自适应光学仿真系统运行输出结果。(a)湍流相位屏;(b)哈特曼波前探测器子孔径光斑;(c) PZT变形镜校正面形;(d)开环CCD远场光斑;(e)闭环CCD远场光斑

    Figure 6.  The simulation results of adaptive optics system. (a) The turbulence phase screen; (b) The subaperture spots of Hartmann wavefront sensor; (c) The surface shape of PZT deformable mirror; (d) The farfield spot of CCD in open-loop; (e) The farfield spot of CCD in closed-loop

    图 7  自适应光学系统校正效果随湍流强度的变化

    Figure 7.  The correction residual errors of adaptive optics system change with the turbulence intensity

  • [1]

    Andrews L C, Phillips R L. Laser beam propagation through random media[M]. 2nd ed. Bellingham, WA: SPIE Press, 2005.

    [2]

    Nelson W, Palastro J P, Wu C, et al. Using an incoherent target return to adaptively focus through atmospheric turbulence[J]. Optics Letters, 2016, 41(6): 1301-1305. doi: 10.1364/OL.41.001301

    [3]

    Carbillet M, Riccardi A. Numerical modeling of atmospherically perturbed phase screens: new solutions for classical fast Fourier transform and Zernike methods[J]. Applied Optics, 2010, 49(31): G47-G52. doi: 10.1364/AO.49.000G47

    [4]

    Sedmak G. Implementation of fast-Fourier-transform-based simulations of extra-large atmospheric phase and scintillation screens[J]. Applied Optics, 2004, 43(23): 4527-4538. doi: 10.1364/AO.43.004527

    [5]

    Le Louarn M, Clare R, Béchet C, et al. Simulations of adaptive optics systems for the E-ELT[J]. Proceedings of SPIE, 2012, 8447: 84475D. https://www.spiedigitallibrary.org/conference-proceedings-of-spie/8447/84475D/Simulations-of-adaptive-optics-systems-for-the-E-ELT/10.1117/12.925128.full

    [6]

    Carbillet M, Vérinaud C, Femenía B, et al. Modelling astronomical adaptive optics-Ⅰ. The software package CAOS[J]. Monthly Notices of the Royal Astronomical Society, 2005, 356(4): 1263-1275. doi: 10.1111/mnr.2005.356.issue-4

    [7]

    Kanev F Y, Lukin V V, Makenova N A. Numerical simulation in adaptive optics[J]. Proceedings of SPIE, 2005, 6018: 139-147. https://www.researchgate.net/profile/Vladimir_Lukin4/publication/259307106_Numerical_simulation_in_adaptive_optics_-_art_no_60180H/links/55533f3408ae6943a86dd023.pdf?origin=publication_detail

    [8]

    Widiker J J, Miller N J, Whiteley M R. Real-time coherent phased array image synthesis and atmospheric compensation testing[J]. Proceedings of SPIE, 2012, 8395: 839505. doi: 10.1117/12.921892

    [9]

    网络版Seelight光学系统虚拟仿真实验平台[EB/OL]. http://www.seelight.net/.

    [10]

    Tyson P K. Principles of Adaptive Optics[M]. Pittsburgh: Academic Press, 1991.

  • 加载中

(7)

计量
  • 文章访问数:  10185
  • PDF下载数:  3848
  • 施引文献:  0
出版历程
收稿日期:  2018-01-09
修回日期:  2018-02-28
刊出日期:  2018-03-15

目录

/

返回文章
返回