静轨图像消旋算法及其验证方法

王梅竹, 黄小仙, 冯旗. 静轨图像消旋算法及其验证方法[J]. 光电工程, 2018, 45(5): 170725. doi: 10.12086/oee.2018.170725
引用本文: 王梅竹, 黄小仙, 冯旗. 静轨图像消旋算法及其验证方法[J]. 光电工程, 2018, 45(5): 170725. doi: 10.12086/oee.2018.170725
Wang Meizhu, Huang Xiaoxian, Feng Qi. Elimination method of image rotation for geostationary radiometer and its verification method[J]. Opto-Electronic Engineering, 2018, 45(5): 170725. doi: 10.12086/oee.2018.170725
Citation: Wang Meizhu, Huang Xiaoxian, Feng Qi. Elimination method of image rotation for geostationary radiometer and its verification method[J]. Opto-Electronic Engineering, 2018, 45(5): 170725. doi: 10.12086/oee.2018.170725

静轨图像消旋算法及其验证方法

  • 基金项目:
    全球变化与海汽相互作用专项(GASI-03-03-01-01)
详细信息
    作者简介:
    通讯作者: 冯旗(1964-),男,博士,研究员,主要从事航天光电遥感系统方面的研究。E-mail: fengqi168@vip.sina.com
  • 中图分类号: TP73

Elimination method of image rotation for geostationary radiometer and its verification method

  • Fund Project: Supported by Global Climate Alteration and Sea-air Interaction Special Fund (GASI-03-03-01-01)
More Information
  • 我国正处于海洋高频观测的发展阶段,作为海洋观测的一个重要途径,静止轨道海洋成像辐射计的发展具有重要的战略意义。本文分析了静止轨道二维指向面阵成像光学系统所引入的像旋误差,提出了针对面阵误差的图像消旋算法,并且给出了消旋算法有效性的验证方法。经验证,本文提出的消旋算法,消除了39%像面旋转的影响,可以大大提高二维指向成像的地理定位精度,提升遥感仪器的准确度,因此本工作为二维指向面阵成像系统后续图像处理奠定了基础。

  • Overview: China has 18000 km coastline and the oceans have a vital impact on our climate, agriculture and military. At present, the observation of the oceans in our country is still in the polar orbit observation stage with a revisit cycle of 1~2 days. However, tides, currents, storm surges, oil spills and military activities often change greatly in one day. Therefore, the development of Geostationary Ocean Radiometer is imperative. The geostationary ocean radiometer can perform high-frequency observations of a specific area of ocean. However, due to the influence of the optical system, the observing field is small and additional scanning equipment is needed to expand the observation field. Two-dimensional pointing mirror with plane detector and staring imaging is a better way. Two-dimensional pointing mirror has small size, light weight, and can rotate flexibly. However, the rotation of two-dimensional pointing mirror about its tilt and azimuth axes introduces errors in imaging system, including non-linear errors and image rotation errors.

    The purpose of this paper is to eliminate the image rotation errors introduced by two-dimensional pointing mirrors. The image rotation elimination method has also been proposed before, including optical method and image processing method. They are often used in the image rotation of polar orbiting satellites, aimed at linear array detectors and have obvious effects of image rotation elimination, but no quantitative verification method is given. The proposed image rotation elimination method is aimed at the image rotation errors introduced by the two-dimensional pointing plane imaging optical system of geostationary orbit. In this paper, we analyze the image rotation errors, propose the elimination method according to the correspondence between objects and images, give the image rotation elimination formula, and use the bilinear interpolation method to get the refined image. At the same time, we extract the SIFT feature points of the test images, give the corresponding quantitative verification method based on the degree of rotation between feature points of adjacent images. According to images taken by the Geostationary Ocean Radiometer model machine, it is proved that the proposed rotation elimination method can reduce 39% of image rotation errors. This indicates that the algorithm greatly improve the geographical accuracy of two-dimensional directional imaging and improve the accuracy of remote sensing instruments. Therefore, the work lay a good foundation for image processing in two-dimensional pointing plane imaging system.

  • 加载中
  • 图 1  二维指向镜工作原理

    Figure 1.  Operating principle of 2-dimetional pointing mirror

    图 2  像旋角δ示意图

    Figure 2.  Sketch map of rotation angle δ

    图 3  消像旋流程图

    Figure 3.  Flow chart of image rotation elimination

    图 4  二维指向镜的物面对应关系

    Figure 4.  Corresponding relation of object and image of 2-dimetional pointing mirror

    图 5  待消旋和已消旋的图像轮廓示意图

    Figure 5.  Sketch map of image outline before (a) and after (b) image rotation elimination

    图 6  像旋矫正后的裁剪示意图

    Figure 6.  Sketch map of cutting image after image rotation elimination

    图 7  双线性插值示意图

    Figure 7.  Sketch map of bilinear interpolation

    图 8  消旋前后相邻图像的配准点和配准点连线斜率角示意图

    Figure 8.  Sketch map of image outline before and after image rotation elimination

    图 9  消像旋前后的图像。(a)未消旋的原图像;(b)消旋后未经剪裁的图像;(c)消旋后经裁剪的图像

    Figure 9.  Images before and after image rotation elimination. (a) Original image before image rotation elimination; (b) Uncut image after image rotation elimination; (c) Cut image after image rotation elimination

    图 10  消旋前的配准图像

    Figure 10.  Image registration picture before image rotation elimination

    图 11  消旋后的配准图像

    Figure 11.  Image registration picture after image rotation elimination

    图 12  消旋前后的Δφ分布图

    Figure 12.  Distribution diagram of Δφ before and after image rotation elimination

    表 1  本文用到的系统参数

    Table 1.  System parameters in this paper

    内容 参数
    波段 可见近红外
    轨道高度/km 35800
    探测器像元大小 12 μm×12 μm
    面阵规模 2048×2048
    子图像个数 5×5
    焦距/mm 1714
    角分辨率/μrad 7
    子图像视场 0.82°×0.82°
    下载: 导出CSV

    表 2  消旋前后的Δφ

    Table 2.  Δφ for image rotation elimination unfinished and finished

    组数 ΔφO ΔφR 减小比例/%
    1 0.7613 0.4992 34.43
    2 0.5702 0.2993 47.51
    3 0.5175 0.2812 45.66
    4 0.5866 0.4196 28.47
    下载: 导出CSV
  • [1]

    张锷, 龚惠兴.消除45°旋转扫描反射镜像旋转系统的研究及应用[J].红外与毫米波学报, 1999, 18(2): 125-132. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyh902.005&dbname=CJFD&dbcode=CJFQ

    Zhang E, Gong H X. Research and application of system for offsetting image rotation from 45° rotating scan mirror[J]. Journal of Infrared and Millimeter Waves, 1999, 18(2): 125-132. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyh902.005&dbname=CJFD&dbcode=CJFQ

    [2]

    王岱, 李晓燕, 吴钦章.某光测设备上消像旋的设计[J].光电工程, 2012, 39(1): 108-112. http://www.oee.ac.cn/CN/abstract/abstract67.shtml

    Wang D, Li X Y, Wu Q Z. Design of eliminating image rotation on opto-electronic imaging tracking and measuring device[J]. Opto-Electronic Engineering, 2012, 39(1): 108-112. http://www.oee.ac.cn/CN/abstract/abstract67.shtml

    [3]

    李淑英, 周世椿.二维指向镜的成像特性分析[J].光电工程, 2008, 35(5): 17-22. http://www.oee.ac.cn/CN/abstract/abstract936.shtml

    Li S Y, Zhou S C. Analysis of the imaging characteristics of the two-dimensional pointing mirror[J]. Opto-Electronic Engineering, 2008, 35(5): 17-22. http://www.oee.ac.cn/CN/abstract/abstract936.shtml

    [4]

    惠彬, 裴云天, 王淦泉.二维扫描镜扫描特性理论分析[J].量子电子学报, 2005, 22(5): 810-813. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ldxu200505029&dbname=CJFD&dbcode=CJFQ

    Hui B, Pei Y T, Wang G Q. Optical analysis of space two-axus scanning mirror[J]. Chinese Journal of Quantum Electronics, 2005, 22(5): 810-813. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ldxu200505029&dbname=CJFD&dbcode=CJFQ

    [5]

    王武, 洪普, 王波, 等.二维扫描镜像旋特性分析[J].光学与光电技术, 2015, 13(2): 82-86. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxgd201502018&dbname=CJFD&dbcode=CJFQ

    Wang W, Hong P, Wang B, et al. Characteristic analysis of two-dimensional scanning mirror rotating[J]. Optics & Optoelectronic Technology, 2015, 13(2): 82-86. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gxgd201502018&dbname=CJFD&dbcode=CJFQ

    [6]

    吴凡, 王大鹏.二维指向镜的定域扫描方式的扫描特性分析[J].光电技术应用, 2009, 24(4): 16-20. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gdyg200904007&dbname=CJFD&dbcode=CJFQ

    Wu F, Wang D P. Analysis of scanning traces characteristics of the two-axis pointing mirror in the mode of scanning in given area[J]. Electro-Optic Technology Application, 2009, 24(4): 16-20. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=gdyg200904007&dbname=CJFD&dbcode=CJFQ

    [7]

    王淦泉, 陈桂林.地球同步轨道二维扫描红外成像技术[J].红外与激光工程, 2014, 43(2): 429-433. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyj201402016&dbname=CJFD&dbcode=CJFQ

    Wang G Q, Chen G L. Two-dimensional scanning infrared imaging technology on geosynchronous orbit[J]. Infrared and Laser Engineering, 2014, 43(2): 429-433. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyj201402016&dbname=CJFD&dbcode=CJFQ

    [8]

    孙德新, 王建宇. 45°镜系统扫描轨迹分析及其对像旋校正的影响[J].红外与毫米波学报, 2005, 24(1): 19-22. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyh200501004&dbname=CJFD&dbcode=CJFQ

    Sun D X, Wang J Y. Scan track of system using 45° mirror and its effect on the correction of image rotation[J]. Journal of Infrared and Millimeter Waves, 2005, 24(1): 19-22. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyh200501004&dbname=CJFD&dbcode=CJFQ

    [9]

    连铜淑.反射棱镜共轭理论:光学仪器的调整与稳象[M].北京:北京理工大学出版社, 1988: 1-3.

    Lian T S. Conjugate Theory Of Reflecting Prism[M]. Beijing: Beijing Institute of Technology Press, 1988: 1-3.

    [10]

    王梅竹, 黄小仙, 冯旗.高轨无缝面阵扫描判断方法:栅格法和几何相交法[J].遥感学报, 2017, 21(6): 871-880 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ygxb201706006&dbname=CJFD&dbcode=CJFQ

    Wang M Z, Huang X X, Feng Q. Two judging methods of seamless stitching for frame sensor on the geostationary orbit: Grid method and the geometric intersection method[J]. Journal of Remote Sensing, 2017, 21(6): 871-880. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=ygxb201706006&dbname=CJFD&dbcode=CJFQ

    [11]

    Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. https://link.springer.com/article/10.1023/B%3AVISI.0000029664.99615.94

    [12]

    Fischler M A, Bolles R C. Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography[J]. Readings in Computer Vision, 1987, 24(6): 726-740. http://dl.acm.org/citation.cfm?id=358692

  • 加载中

(12)

(2)

计量
  • 文章访问数:  6881
  • PDF下载数:  2783
  • 施引文献:  0
出版历程
收稿日期:  2017-12-26
修回日期:  2018-03-01
刊出日期:  2018-05-01

目录

/

返回文章
返回