Iroegbu Paul Ikechukwu, Huang Shihong, Li Yujia, et al. Laser sources for optical fiber sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 170684. doi: 10.12086/oee.2018.170684
Citation: Iroegbu Paul Ikechukwu, Huang Shihong, Li Yujia, et al. Laser sources for optical fiber sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 170684. doi: 10.12086/oee.2018.170684

Laser sources for optical fiber sensing

    Fund Project: Supported by the Key Research and Development Program of Ministry of Science and Technology (2016YFC0801202), the Project of Natural Science Foundation of China (61635004, 61377066, and 61705024), the Science Fund for Distinguished Young Scholars of Chongqing (CSTC2014JCYJJQ40002), and the Fundamental Research Funds for the Central Universities (106112017CDJZRPY0005)
More Information
  • Optical fiber sensing system depends closely on the quality of the laser source, because laser parameters, such as the power stability, linewidth and phase noise, have a great impact on the performance of the fiber sensing system in such parameters as the maximum measuring distance, precision, sensitivity and noise characteristics. Therefore, the related high quality laser source has caused much attention these years. In this article, a brief review on the development of the laser source for fiber sensing is presented. Laser applications in optical fiber sensing are emphasized with the utilization of the narrow-linewidth laser, tunable laser and broadband light source. Finally, the main limiting factors and kernel technology of laser source for the optical fiber sensing are summarized. In order to achieve high performance of optical fiber sensing, the availability of the ideal ultra-narrow-linewidth and ultra-stable laser, which could be tuned at a desired wavelength span and tuning rate, will be definitely one of the main research directions of the future optical fiber sensing.
  • 加载中
  • [1] 张森, 王臻, 刘孟华, 等.光纤传感技术的发展及应用[J].光纤与电缆及其应用技术, 2007(3): 1-3. doi: 10.3969/j.issn.1006-1908.2007.03.001

    CrossRef Google Scholar

    Zhang S, Wang Z, Liu M H, et al. Development and application of optical fiber sensing technology[J]. Optical Fiber & Electric Cable, 2007(3): 1-3. doi: 10.3969/j.issn.1006-1908.2007.03.001

    CrossRef Google Scholar

    [2] 廖延彪, 黎敏.光纤传感器的今日与发展[J].传感器世界, 2004, 10(2): 6-12. doi: 10.3969/j.issn.1006-883X.2004.02.001

    CrossRef Google Scholar

    Liao Y B, Li M. The development of optical fiber sensors[J]. Sensor World, 2004, 10(2): 6-12. doi: 10.3969/j.issn.1006-883X.2004.02.001

    CrossRef Google Scholar

    [3] 贾方秀, 丁振良, 袁峰, 等.基于全相位快速傅里叶变换谱分析的激光动态目标实时测距系统[J].光学学报, 2010, 30(10): 2928-2934.

    Google Scholar

    Jia F X, Ding Z L, Yuan F, et al. Real-time laser range finding system for moving target based on all-phase fourier transfrorm spectrum analysis[J]. Acta Optica Sinica, 2010, 30(10): 2928-2934.

    Google Scholar

    [4] 张旭苹.全光纤分布式光纤传感技术[M].北京:科学出版社, 2013.

    Google Scholar

    Zhang X P. All Distributed optical Fiber Sensing Technology[M]. Beijing: Science Press, 2013.

    Google Scholar

    [5] Geng J H, Spiegelberg C, Jiang S B. Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry[J]. IEEE Photonics Technology Letters, 2005, 17(9): 1827-1829. doi: 10.1109/LPT.2005.853258

    CrossRef Google Scholar

    [6] Passy R, Gisin N, von der Weid J P, et al. Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources[J]. Journal of Lightwave Technology, 1994, 12(9): 1622-1630. doi: 10.1109/50.320946

    CrossRef Google Scholar

    [7] Cranch G A, Nash P J, Kirkendall C K. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications[J]. IEEE Sensors Journal, 2003, 3(1): 19-30.

    Google Scholar

    [8] Bao X, Dhliwayo J, Heron N, et al. Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering[J]. Journal of Lightwave Technology, 1995, 13(7): 1340-1348. doi: 10.1109/50.400678

    CrossRef Google Scholar

    [9] 周海波, 刘建业, 赖际舟, 等.光纤陀螺仪的发展现状[J].传感器技术, 2005, 24(6): 1-3. doi: 10.3969/j.issn.1000-9787.2005.06.001

    CrossRef Google Scholar

    Zhou H B, Liu J Y, Lai J Z, et al. Development status of fiber-optic gyroscopes[J]. Journal of Transducer Technology, 2005, 24(6): 1-3. doi: 10.3969/j.issn.1000-9787.2005.06.001

    CrossRef Google Scholar

    [10] 谭显裕.军用光纤陀螺的发展、关键技术和应用前景[J].现代防御技术, 1998(4): 56-62.

    Google Scholar

    Tan X Y. The Development, key technology and application prospect of military fiber optic gyroscope[J]. Modern Defence Technology, 1998(4): 56-62.

    Google Scholar

    [11] 顾一弘, 戴基智, 代志勇.高分辨率光频域反射计的发展和应用[J].红外, 2009, 30(4): 30-40.

    Google Scholar

    Gu Y H, Dai J Z, Dai Z Y. Development and application of optical frequency domain reflectometer with high resolution[J]. Infrared, 2009, 30(4): 30-40.

    Google Scholar

    [12] 刘善峥, 张望, 于靖旭.基于可调谐掺铒光纤激光器和掺铒光纤放大器的光声光谱气体分析仪[J].中国激光, 2009, 36(4): 964-967.

    Google Scholar

    Liu S Z, Zhang W, Yu J X. Photoacoustic spectrometer based on the combination of tunable erbium doped fiber laser and erbium doped fiber amplifier[J]. Chinese Journal of Lasers, 2009, 36(4): 964-967.

    Google Scholar

    [13] 彭勇. 基于可调谐光纤激光器的痕量气体光声光谱检测技术研究[D]. 大连: 大连理工大学, 2011.

    Google Scholar

    Peng Y. Tunable fiber laser based photoacoustic spectroscopy technology for trace gas detection[D]. Dalian: Dalian University of Technology, 2011.http://cdmd.cnki.com.cn/Article/CDMD-10141-1012271825.htm

    Google Scholar

    [14] Jackson D A, Lobo R A B, Reekie L, et al. Simple multiplexing scheme for a fiber-optic grating sensor network[J]. Optics Letters, 1993, 18(14): 1192-1194. doi: 10.1364/OL.18.001192

    CrossRef Google Scholar

    [15] Zhao C L, Xiao L M, Ju J, et al. Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor[J]. Journal of Lightwave Technology, 2008, 26(2): 220-227. doi: 10.1109/JLT.2007.911106

    CrossRef Google Scholar

    [16] Zhang W D, Wei K Y, Huang L G, et al. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating[J]. Optics Express, 2016, 24(17): 19278-19285. doi: 10.1364/OE.24.019278

    CrossRef Google Scholar

    [17] Hong K S, Park H C, Kim B Y, et al. 1000 nm tunable acousto-optic filter based on photonic crystal fiber[J]. Applied Physics Letters, 2008, 92(3): 031110. doi: 10.1063/1.2806198

    CrossRef Google Scholar

    [18] Albert J, Shao L Y, Caucheteur C. Tilted fiber bragg grating sensors[J]. Laser & Photonics Review, 2013, 7(1): 83-108.

    Google Scholar

    [19] Cliche J F, Allard M, Têtu M. Ultra-narrow linewidth and high frequency stability laser sources[C]//Proceedings of the Coherent Optical Technologies and Applications, 2006.

    Google Scholar

    [20] Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2011, 6(10): 687-692.

    Google Scholar

    [21] Peng Y. A compact narrow-linewidth laser with a low-Q monolithic cavity[J]. Laser Physics, 2013, 23(10): 105809. doi: 10.1088/1054-660X/23/10/105809

    CrossRef Google Scholar

    [22] Bernhardi E H, van Wolferen H A G M, Agazzi L, et al. Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon[J]. Optics Letters, 2010, 35(14): 2394-2396. doi: 10.1364/OL.35.002394

    CrossRef Google Scholar

    [23] Liang W, Ilchenko V S, Savchenkov A A, et al. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser[J]. Optics Letters, 2010, 35(16): 2822-2824. doi: 10.1364/OL.35.002822

    CrossRef Google Scholar

    [24] Huang S H, Zhu T, Liu M, et al. Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope[J]. Scientific Reports, 2017, 7: 41988. doi: 10.1038/srep41988

    CrossRef Google Scholar

    [25] Spiegelberg C, Geng J H, Hu Y D, et al. Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003)[J]. Journal of Lightwave Technology, 2004, 22(1): 57-62. doi: 10.1109/JLT.2003.822208

    CrossRef Google Scholar

    [26] Shen Y H, Qiu Y Q, Wu B, et al. Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range[J]. Optics Express, 2007, 15(15): 363-370.

    Google Scholar

    [27] Xu S H, Yang Z M, Liu T, et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm[J]. Optics Express, 2010, 18(2): 1249-1254. doi: 10.1364/OE.18.001249

    CrossRef Google Scholar

    [28] Mo S P, Huang X, Xu S H, et al. 600-Hz linewidth short-linear-cavity fiber laser[J]. Optics Letters, 2014, 39(20): 5818-5821. doi: 10.1364/OL.39.005818

    CrossRef Google Scholar

    [29] Yang F, Ye Q, Pan Z Q, et al. 100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application[J]. Optics Communications, 2012, 285(2): 149-152. doi: 10.1016/j.optcom.2011.09.030

    CrossRef Google Scholar

    [30] Chen M, Meng Z, Tu X B, et al. Low-noise, single-frequency, single-polarization Brillouin/erbium fiber laser[J]. Optics Letters, 2013, 38(12): 2041-2043. doi: 10.1364/OL.38.002041

    CrossRef Google Scholar

    [31] Chen M, Meng Z, Zhang Y C, et al. Ultranarrow-linewidth brillouin/erbium fiber laser based on 45-cm erbium-doped fiber[J]. IEEE Photonics Journal, 2015, 7(1): 1500606.

    Google Scholar

    [32] Zhu T, Bao X Y, Chen L, et al. Experimental study on stimulated Rayleigh scattering in optical fibers[J]. Optics Express, 2010, 18(20): 22958-22963.

    Google Scholar

    [33] Zhu T, Bao X Y, Chen L. A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering[J]. Optics Communications, 2012, 285(6): 1371-1374. doi: 10.1016/j.optcom.2011.11.072

    CrossRef Google Scholar

    [34] Zhu T, Chen F Y, Huang S H, et al. An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber[J]. Laser Physics Letters, 2013, 10(5): 055110. doi: 10.1088/1612-2011/10/5/055110

    CrossRef Google Scholar

    [35] Zhu T, Huang S H, Shi L L, et al. Rayleigh backscattering: a method to highly compress laser linewidth[J]. Chinese Science Bulletin, 2014, 59(33): 4631-4636. doi: 10.1007/s11434-014-0603-0

    CrossRef Google Scholar

    [36] Yin G L, Saxena B, Bao X Y. Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber[J]. Optics Express, 2011, 19(27): 25981-25989. doi: 10.1364/OE.19.025981

    CrossRef Google Scholar

    [37] Pang M, Xie S R, Bao X Y, et al. Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber[J]. Optics Letters, 2012, 37(15): 3129-3131. doi: 10.1364/OL.37.003129

    CrossRef Google Scholar

    [38] Saxena B, Bao X Y, Chen L. Suppression of thermal frequency noise in erbium-doped fiber random lasers[J]. Optics Letters, 2014, 39(4): 1038-1041. doi: 10.1364/OL.39.001038

    CrossRef Google Scholar

    [39] Mears R J, Reekie L, Poole S B, et al. Low-threshold tunable CW and Q-switched fiber laser operating at 1.55 μm[J]. Electronic Letters, 1986, 22(3): 159-160. doi: 10.1049/el:19860111

    CrossRef Google Scholar

    [40] Iwatsuki K, Okamura H, Saruwatari M. Wavelength-tunable single-frequency and single-polarisation Er-doped fibre ring-laser with 1.4 kHz linewidth[J]. Electronics Letters, 1990, 26(24): 2033-2035. doi: 10.1049/el:19901312

    CrossRef Google Scholar

    [41] Maeda M W, Patel J S, Smith D A, et al. An electronically tunable fiber laser with a liquid-crystal etalon filter as the wavelength-tuning element[J]. IEEE Photonics Technology Letters, 1990, 2(11): 787-789. doi: 10.1109/68.63221

    CrossRef Google Scholar

    [42] Smith D A, Maeda M W, Johnson J J, et al. Acoustically tuned erbium-doped fiber ring laser[J]. Optics Letters, 1991, 16(6): 387-389. doi: 10.1364/OL.16.000387

    CrossRef Google Scholar

    [43] Zyskind J L, Sulhoff J W, Sun Y, et al. Singlemode diode-pumped tunable erbium-doped fibre laser with linewidth less than 5.5 kHz[J]. Electronics Letters, 1991, 27(23): 2148-2149. doi: 10.1049/el:19911330

    CrossRef Google Scholar

    [44] Lin G R, Chang J Y, Liao Y S, et al. L-band erbium-doped fiber laser with coupling-ratio controlled wavelength tunability[J]. Optics Express, 2006, 14(21): 9743-9749. doi: 10.1364/OE.14.009743

    CrossRef Google Scholar

    [45] Zhang A Q, Feng X H, Wan M G, et al. Tunable single frequency fiber laser based on FP-LD injection locking[J]. Optics Express, 2013, 21(10): 12874-12880. doi: 10.1364/OE.21.012874

    CrossRef Google Scholar

    [46] Zhu T, Bao X Y, Chen L. A single longitudinal-mode tunable fiber ring laser based on stimulated rayleigh scattering in a nonuniform optical fiber[J]. Journal of Lightwave Technology, 2011, 29(12): 1802-1807. doi: 10.1109/JLT.2011.2142292

    CrossRef Google Scholar

    [47] Zhu T, Zhang B M, Shi L L, et al. Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering[J]. Optics Express, 2016, 24(2): 1324-1330. doi: 10.1364/OE.24.001324

    CrossRef Google Scholar

    [48] Li Y J, Gao L, Zhu T, et al. Graphene-assisted all-fiber optical-controllable laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 0901709.

    Google Scholar

    [49] Ye J, Cundiff S T. Femtosecond Optical Frequency Comb: Principle, Operation and Applications[M]. Norwell: Springer, 2004.

    Google Scholar

    [50] Al-Taiy H, Wenzel N, Preußler S, et al. Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy[J]. Optics Letters, 2014, 39(20): 5826-5829. doi: 10.1364/OL.39.005826

    CrossRef Google Scholar

    [51] Wang L, Cao Y, Wan M, et al. Tunable single-frequency fiber laser based on the spectral narrowing effect in a nonlinear semiconductor optical amplifier[J]. Optics Express, 2016, 24(26): 29705-29713. doi: 10.1364/OE.24.029705

    CrossRef Google Scholar

    [52] Li Z, Alam S U, Jung Y, et al. All-fiber, ultra-wide band tunable laser at 2 μm[J]. Optics Letters, 2013, 38(22): 4739-4742. doi: 10.1364/OL.38.004739

    CrossRef Google Scholar

    [53] Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 2006, 78(4): 1135-1184. doi: 10.1103/RevModPhys.78.1135

    CrossRef Google Scholar

    [54] Kumar V V R K, George A K, Reeves W H, et al. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation[J]. Optics Express, 2002, 10(25): 1520-1525. doi: 10.1364/OE.10.001520

    CrossRef Google Scholar

    [55] Wright L G, Christodoulides D N, Wise F W. Controllable spatiotemporal nonlinear effects in multimode fibres[J]. Nature Photonics, 2015, 9: 306-310. doi: 10.1038/nphoton.2015.61

    CrossRef Google Scholar

  • Overview: Optical fiber sensing system depends closely on the quality of the laser source employed, because laser parameters such as the power stability, linewidth and phase noise, have a great impact on the performance of the fiber sensing system in such parameters as the maximum measuring distance, precision, sensitivity and noise characteristics which finds tremendous applications to areas to name a few; distributed oil pipeline monitoring, high resolution sensing, low noise microwave generation, optical atomic clocks, optical precision metrology, high resolution spectroscopy, microwave photonics and laser radars etc. In order to improve the measurement range, noise characteristics, sensitivity and precision of optical fiber sensing system, we need to obtain a narrow linewidth laser light source with a longer coherent length (characterized by laser linewidth), phase noise (characterizing laser frequency stability) and low intensity noise (characterizing laser power stability). In the light of all this, a great deal of attention over the years has been witnessed in academia and industry in regards to the related high-quality laser source employed for fiber sensing system to name a few; long distance super high resolution distributed oil pipeline monitoring system whose predominant distributed optical fiber sensing technology such as OFDR (optical frequency domain reflectometry) technique is greatly dependent of the laser source linewidth for better sensitivity, range and other key factors to its applications, in optical fiber hydrophone system the linewidth of the laser source employed very much determines the system noise and minimum measurable signal of the system, the use of FBG (fiber Bragg grating) to build up a sensor network operating under the technique of either spectral analysis or tunable filter matching method for demodulation purposes greatly depends on high stable power of the laser source employed for simultaneous demodulation of multiple FBG in a sensor network due to its insertion loss and bandwidth. In this article, a brief review on the development trend of the laser source for fiber sensing is presented which firstly emphasizes on narrow linewidth lasers followed by tunable laser and lastly white laser source. Finally, the main limiting factors and kernel technology of laser source for the optical fiber sensing are summarized. In order to achieve high performance of optical fiber sensing, the availability of the ideal ultra-narrow-linewidth and ultra-stable laser, which could be tuned at a desired wavelength span and tuning rate, will be definitely one of the main research directions of the future optical fiber sensing.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(10)

Article Metrics

Article views(12587) PDF downloads(5429) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint