光纤传感用激光光源技术

IroegbuPaul Ikechukwu, 黄仕宏, 李雨佳, 等. 光纤传感用激光光源技术[J]. 光电工程, 2018, 45(9): 170684. doi: 10.12086/oee.2018.170684
引用本文: IroegbuPaul Ikechukwu, 黄仕宏, 李雨佳, 等. 光纤传感用激光光源技术[J]. 光电工程, 2018, 45(9): 170684. doi: 10.12086/oee.2018.170684
Iroegbu Paul Ikechukwu, Huang Shihong, Li Yujia, et al. Laser sources for optical fiber sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 170684. doi: 10.12086/oee.2018.170684
Citation: Iroegbu Paul Ikechukwu, Huang Shihong, Li Yujia, et al. Laser sources for optical fiber sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 170684. doi: 10.12086/oee.2018.170684

光纤传感用激光光源技术

  • 基金项目:
    科技部重点项目计划(2016YFC0801202);国家自然科学基金资助项目(61635004, 61377066, 61705024);重庆市科委杰青支持项目(CSTC2014JCYJJQ40002);中央高校基础研究基金资助项目(106112017CDJZRPY0005)
详细信息
    作者简介:
    通讯作者: 朱涛(1976-),男,教授,博士生导师,主要从事激光器及调控技术、光电功能材料及功能器件和光纤传感技术等方面的研究。E-mail: zhutao@cqu.edu.cn
  • 中图分类号: O436.3;TN253

Laser sources for optical fiber sensing

  • Fund Project: Supported by the Key Research and Development Program of Ministry of Science and Technology (2016YFC0801202), the Project of Natural Science Foundation of China (61635004, 61377066, and 61705024), the Science Fund for Distinguished Young Scholars of Chongqing (CSTC2014JCYJJQ40002), and the Fundamental Research Funds for the Central Universities (106112017CDJZRPY0005)
More Information
  • 光纤传感系统离不开激光光源,作为被测量信号载体的光波,激光光源本身的性能,如激光器的功率稳定性、线宽、相位噪声等参数对光纤传感系统的探测距离、探测精度、灵敏度以及噪声特性起决定性的作用,因此发展优质激光光源已成为近些年的研究热点。本文简要论述了激光光源在光纤传感领域的发展状况;重点介绍了窄线宽激光光源、可调谐激光光源以及宽带白光光源在光纤传感技术领域中的应用需求;概括了现有激光光源在光纤传感中所面临的主要限制因素和关键技术。为了进一步提高光纤传感系统的性能指标,获得可在任意波段、任意时刻实现的超窄、超稳理想激光光源将是未来光纤传感的一个主要研究方向。

  • Overview: Optical fiber sensing system depends closely on the quality of the laser source employed, because laser parameters such as the power stability, linewidth and phase noise, have a great impact on the performance of the fiber sensing system in such parameters as the maximum measuring distance, precision, sensitivity and noise characteristics which finds tremendous applications to areas to name a few; distributed oil pipeline monitoring, high resolution sensing, low noise microwave generation, optical atomic clocks, optical precision metrology, high resolution spectroscopy, microwave photonics and laser radars etc. In order to improve the measurement range, noise characteristics, sensitivity and precision of optical fiber sensing system, we need to obtain a narrow linewidth laser light source with a longer coherent length (characterized by laser linewidth), phase noise (characterizing laser frequency stability) and low intensity noise (characterizing laser power stability). In the light of all this, a great deal of attention over the years has been witnessed in academia and industry in regards to the related high-quality laser source employed for fiber sensing system to name a few; long distance super high resolution distributed oil pipeline monitoring system whose predominant distributed optical fiber sensing technology such as OFDR (optical frequency domain reflectometry) technique is greatly dependent of the laser source linewidth for better sensitivity, range and other key factors to its applications, in optical fiber hydrophone system the linewidth of the laser source employed very much determines the system noise and minimum measurable signal of the system, the use of FBG (fiber Bragg grating) to build up a sensor network operating under the technique of either spectral analysis or tunable filter matching method for demodulation purposes greatly depends on high stable power of the laser source employed for simultaneous demodulation of multiple FBG in a sensor network due to its insertion loss and bandwidth. In this article, a brief review on the development trend of the laser source for fiber sensing is presented which firstly emphasizes on narrow linewidth lasers followed by tunable laser and lastly white laser source. Finally, the main limiting factors and kernel technology of laser source for the optical fiber sensing are summarized. In order to achieve high performance of optical fiber sensing, the availability of the ideal ultra-narrow-linewidth and ultra-stable laser, which could be tuned at a desired wavelength span and tuning rate, will be definitely one of the main research directions of the future optical fiber sensing.

  • 加载中
  • 图 1  (a) 基于回音壁微腔自注入瑞利反馈的激光器线宽压缩示意图;(b)线宽为8 MHz的半导体激光器频谱;(c)线宽为160 Hz窄线宽激光器频谱[23]

    Figure 1.  (a) Diagram of semiconductor laser linewidth compression based on the self-injection Rayleigh scattering of external whispering gallery mode resonator; (b) Frequency spectrum of the free running semiconductor laser with linewidth of 8 MHz; (c) Frequency spectrum of the laser with linewidth compressed to 160 Hz[23]

    图 2  (a) 双腔反馈系统原理图;(b)有(实线)无(虚线)双腔反馈结构输出功率谱[24]

    Figure 2.  (a) Schematic diagram of DFB dual-cavity self-feedback structure; (b) Output power spectra with (red line) or without (blue line) dual-cavity feedback structure[24]

    图 3  (a) 虚拟折叠环形谐振腔原理图;(b)延迟光纤长度为97.6 km的自外差线型[28]

    Figure 3.  (a) Schematic drawing of the SLC fiber laser; (b) Lineshape of the heterodyne signal measured with 97.6 km fiber delay[28]

    图 4  (a) 基于瑞利散射结合自注入反馈系统结构图;(b)输出功率谱以及其对应洛仑兹拟合线宽[35]

    Figure 4.  (a) Schematic diagram of fiber ring laser combing RBS and self-injection feedback; (b) The output power spectrum and its Lorentz fitting linewidth for the narrowest laser linewidth[35]

    图 5  (a) 光控波长可调谐窄线宽激光器的实验装置图及其输出测试系统;(b)随着控制光功率的增加输出光谱的变化[48]

    Figure 5.  (a) Experimental setup of the optical-controllable wavelength-tunable fiber laser and the measurement system; (b) Output spectra at output 2 with the enhancement of the controlling pump[48]

    图 6  (a) 基于飞秒频率梳选频的可调谐窄线宽激光器; (b)调谐输出光谱[50]

    Figure 6.  (a) The tunable narrow-linewidth fiber laser based on the frequency-selection from femtosecond frequency combs; (b) The tuning output spectrum[50]

    图 7  (a) 基于反向四波混频的可调谐窄线宽激光器;(b),(c)调谐输出光谱[51]

    Figure 7.  (a) The tunable narrow-linewidth fiber laser based on the reversed four-wave mixing; (b), (c) The tuning output spectrum[51]

    图 8  (a) 光子晶体光纤截面图;(b)对应超连续谱[54]

    Figure 8.  (a) Cross section of the PCF; (b) Corresponding super-continuum [54]

    图 9  1 m多模光纤的光谱演变图[55]

    Figure 9.  Total spectrum evolution through the 1 m fiber[55]

    图 10  泵浦能量为120 nJ (a)和180 nJ (b)时对应的光谱:(c)~(e)通过调整初始条件,光谱平整度和带宽被优化(泵浦能量为150 nJ);(f)~(l)不同初始条件下可见光波段的光谱分布(泵浦能量为150 nJ)[55]

    Figure 10.  (a), (b) Typical behavior for increasing energy (120 nJ to 180 nJ); (c)~(e) By adjusting the initial spatial excitation, we optimize the spectral uniformity and bandwidth (the energy for each plot is ~150 nJ). (f)~(l) Visible spectra (all ~150 nJ)[55]

  • [1]

    张森, 王臻, 刘孟华, 等.光纤传感技术的发展及应用[J].光纤与电缆及其应用技术, 2007(3): 1-3. doi: 10.3969/j.issn.1006-1908.2007.03.001

    Zhang S, Wang Z, Liu M H, et al. Development and application of optical fiber sensing technology[J]. Optical Fiber & Electric Cable, 2007(3): 1-3. doi: 10.3969/j.issn.1006-1908.2007.03.001

    [2]

    廖延彪, 黎敏.光纤传感器的今日与发展[J].传感器世界, 2004, 10(2): 6-12. doi: 10.3969/j.issn.1006-883X.2004.02.001

    Liao Y B, Li M. The development of optical fiber sensors[J]. Sensor World, 2004, 10(2): 6-12. doi: 10.3969/j.issn.1006-883X.2004.02.001

    [3]

    贾方秀, 丁振良, 袁峰, 等.基于全相位快速傅里叶变换谱分析的激光动态目标实时测距系统[J].光学学报, 2010, 30(10): 2928-2934. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002265581

    Jia F X, Ding Z L, Yuan F, et al. Real-time laser range finding system for moving target based on all-phase fourier transfrorm spectrum analysis[J]. Acta Optica Sinica, 2010, 30(10): 2928-2934. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK201002265581

    [4]

    张旭苹.全光纤分布式光纤传感技术[M].北京:科学出版社, 2013.

    Zhang X P. All Distributed optical Fiber Sensing Technology[M]. Beijing: Science Press, 2013.

    [5]

    Geng J H, Spiegelberg C, Jiang S B. Narrow linewidth fiber laser for 100-km optical frequency domain reflectometry[J]. IEEE Photonics Technology Letters, 2005, 17(9): 1827-1829. doi: 10.1109/LPT.2005.853258

    [6]

    Passy R, Gisin N, von der Weid J P, et al. Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources[J]. Journal of Lightwave Technology, 1994, 12(9): 1622-1630. doi: 10.1109/50.320946

    [7]

    Cranch G A, Nash P J, Kirkendall C K. Large-scale remotely interrogated arrays of fiber-optic interferometric sensors for underwater acoustic applications[J]. IEEE Sensors Journal, 2003, 3(1): 19-30. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ026356228

    [8]

    Bao X, Dhliwayo J, Heron N, et al. Experimental and theoretical studies on a distributed temperature sensor based on Brillouin scattering[J]. Journal of Lightwave Technology, 1995, 13(7): 1340-1348. doi: 10.1109/50.400678

    [9]

    周海波, 刘建业, 赖际舟, 等.光纤陀螺仪的发展现状[J].传感器技术, 2005, 24(6): 1-3. doi: 10.3969/j.issn.1000-9787.2005.06.001

    Zhou H B, Liu J Y, Lai J Z, et al. Development status of fiber-optic gyroscopes[J]. Journal of Transducer Technology, 2005, 24(6): 1-3. doi: 10.3969/j.issn.1000-9787.2005.06.001

    [10]

    谭显裕.军用光纤陀螺的发展、关键技术和应用前景[J].现代防御技术, 1998(4): 56-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800618871

    Tan X Y. The Development, key technology and application prospect of military fiber optic gyroscope[J]. Modern Defence Technology, 1998(4): 56-62. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199800618871

    [11]

    顾一弘, 戴基智, 代志勇.高分辨率光频域反射计的发展和应用[J].红外, 2009, 30(4): 30-40. http://d.old.wanfangdata.com.cn/Periodical/hongw200904010

    Gu Y H, Dai J Z, Dai Z Y. Development and application of optical frequency domain reflectometer with high resolution[J]. Infrared, 2009, 30(4): 30-40. http://d.old.wanfangdata.com.cn/Periodical/hongw200904010

    [12]

    刘善峥, 张望, 于靖旭.基于可调谐掺铒光纤激光器和掺铒光纤放大器的光声光谱气体分析仪[J].中国激光, 2009, 36(4): 964-967. http://d.old.wanfangdata.com.cn/Periodical/zgjg200904037

    Liu S Z, Zhang W, Yu J X. Photoacoustic spectrometer based on the combination of tunable erbium doped fiber laser and erbium doped fiber amplifier[J]. Chinese Journal of Lasers, 2009, 36(4): 964-967. http://d.old.wanfangdata.com.cn/Periodical/zgjg200904037

    [13]

    彭勇. 基于可调谐光纤激光器的痕量气体光声光谱检测技术研究[D]. 大连: 大连理工大学, 2011.

    Peng Y. Tunable fiber laser based photoacoustic spectroscopy technology for trace gas detection[D]. Dalian: Dalian University of Technology, 2011.http://cdmd.cnki.com.cn/Article/CDMD-10141-1012271825.htm

    [14]

    Jackson D A, Lobo R A B, Reekie L, et al. Simple multiplexing scheme for a fiber-optic grating sensor network[J]. Optics Letters, 1993, 18(14): 1192-1194. doi: 10.1364/OL.18.001192

    [15]

    Zhao C L, Xiao L M, Ju J, et al. Strain and temperature characteristics of a long-period grating written in a photonic crystal fiber and its application as a temperature-insensitive strain sensor[J]. Journal of Lightwave Technology, 2008, 26(2): 220-227. doi: 10.1109/JLT.2007.911106

    [16]

    Zhang W D, Wei K Y, Huang L G, et al. Optical vortex generation with wavelength tunability based on an acoustically-induced fiber grating[J]. Optics Express, 2016, 24(17): 19278-19285. doi: 10.1364/OE.24.019278

    [17]

    Hong K S, Park H C, Kim B Y, et al. 1000 nm tunable acousto-optic filter based on photonic crystal fiber[J]. Applied Physics Letters, 2008, 92(3): 031110. doi: 10.1063/1.2806198

    [18]

    Albert J, Shao L Y, Caucheteur C. Tilted fiber bragg grating sensors[J]. Laser & Photonics Review, 2013, 7(1): 83-108. http://d.old.wanfangdata.com.cn/Periodical/yykxxb201801005

    [19]

    Cliche J F, Allard M, Têtu M. Ultra-narrow linewidth and high frequency stability laser sources[C]//Proceedings of the Coherent Optical Technologies and Applications, 2006.

    [20]

    Kessler T, Hagemann C, Grebing C, et al. A sub-40-mHz-linewidth laser based on a silicon single-crystal optical cavity[J]. Nature Photonics, 2011, 6(10): 687-692. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_1112.3854

    [21]

    Peng Y. A compact narrow-linewidth laser with a low-Q monolithic cavity[J]. Laser Physics, 2013, 23(10): 105809. doi: 10.1088/1054-660X/23/10/105809

    [22]

    Bernhardi E H, van Wolferen H A G M, Agazzi L, et al. Ultra-narrow-linewidth, single-frequency distributed feedback waveguide laser in Al2O3:Er3+ on silicon[J]. Optics Letters, 2010, 35(14): 2394-2396. doi: 10.1364/OL.35.002394

    [23]

    Liang W, Ilchenko V S, Savchenkov A A, et al. Whispering-gallery-mode-resonator-based ultranarrow linewidth external-cavity semiconductor laser[J]. Optics Letters, 2010, 35(16): 2822-2824. doi: 10.1364/OL.35.002822

    [24]

    Huang S H, Zhu T, Liu M, et al. Precise measurement of ultra-narrow laser linewidths using the strong coherent envelope[J]. Scientific Reports, 2017, 7: 41988. doi: 10.1038/srep41988

    [25]

    Spiegelberg C, Geng J H, Hu Y D, et al. Low-noise narrow-linewidth fiber laser at 1550 nm (June 2003)[J]. Journal of Lightwave Technology, 2004, 22(1): 57-62. doi: 10.1109/JLT.2003.822208

    [26]

    Shen Y H, Qiu Y Q, Wu B, et al. Short cavity single frequency fiber laser for in-situ sensing applications over a wide temperature range[J]. Optics Express, 2007, 15(15): 363-370. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000002101398

    [27]

    Xu S H, Yang Z M, Liu T, et al. An efficient compact 300 mW narrow-linewidth single frequency fiber laser at 1.5 μm[J]. Optics Express, 2010, 18(2): 1249-1254. doi: 10.1364/OE.18.001249

    [28]

    Mo S P, Huang X, Xu S H, et al. 600-Hz linewidth short-linear-cavity fiber laser[J]. Optics Letters, 2014, 39(20): 5818-5821. doi: 10.1364/OL.39.005818

    [29]

    Yang F, Ye Q, Pan Z Q, et al. 100-mW linear polarization single-frequency all-fiber seed laser for coherent Doppler lidar application[J]. Optics Communications, 2012, 285(2): 149-152. doi: 10.1016/j.optcom.2011.09.030

    [30]

    Chen M, Meng Z, Tu X B, et al. Low-noise, single-frequency, single-polarization Brillouin/erbium fiber laser[J]. Optics Letters, 2013, 38(12): 2041-2043. doi: 10.1364/OL.38.002041

    [31]

    Chen M, Meng Z, Zhang Y C, et al. Ultranarrow-linewidth brillouin/erbium fiber laser based on 45-cm erbium-doped fiber[J]. IEEE Photonics Journal, 2015, 7(1): 1500606. http://ieeexplore.ieee.org/document/7029071/

    [32]

    Zhu T, Bao X Y, Chen L, et al. Experimental study on stimulated Rayleigh scattering in optical fibers[J]. Optics Express, 2010, 18(20): 22958-22963. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000000916505

    [33]

    Zhu T, Bao X Y, Chen L. A self-gain random distributed feedback fiber laser based on stimulated Rayleigh scattering[J]. Optics Communications, 2012, 285(6): 1371-1374. doi: 10.1016/j.optcom.2011.11.072

    [34]

    Zhu T, Chen F Y, Huang S H, et al. An ultra-narrow linewidth fiber laser based on Rayleigh backscattering in a tapered optical fiber[J]. Laser Physics Letters, 2013, 10(5): 055110. doi: 10.1088/1612-2011/10/5/055110

    [35]

    Zhu T, Huang S H, Shi L L, et al. Rayleigh backscattering: a method to highly compress laser linewidth[J]. Chinese Science Bulletin, 2014, 59(33): 4631-4636. doi: 10.1007/s11434-014-0603-0

    [36]

    Yin G L, Saxena B, Bao X Y. Tunable Er-doped fiber ring laser with single longitudinal mode operation based on Rayleigh backscattering in single mode fiber[J]. Optics Express, 2011, 19(27): 25981-25989. doi: 10.1364/OE.19.025981

    [37]

    Pang M, Xie S R, Bao X Y, et al. Rayleigh scattering-assisted narrow linewidth Brillouin lasing in cascaded fiber[J]. Optics Letters, 2012, 37(15): 3129-3131. doi: 10.1364/OL.37.003129

    [38]

    Saxena B, Bao X Y, Chen L. Suppression of thermal frequency noise in erbium-doped fiber random lasers[J]. Optics Letters, 2014, 39(4): 1038-1041. doi: 10.1364/OL.39.001038

    [39]

    Mears R J, Reekie L, Poole S B, et al. Low-threshold tunable CW and Q-switched fiber laser operating at 1.55 μm[J]. Electronic Letters, 1986, 22(3): 159-160. doi: 10.1049/el:19860111

    [40]

    Iwatsuki K, Okamura H, Saruwatari M. Wavelength-tunable single-frequency and single-polarisation Er-doped fibre ring-laser with 1.4 kHz linewidth[J]. Electronics Letters, 1990, 26(24): 2033-2035. doi: 10.1049/el:19901312

    [41]

    Maeda M W, Patel J S, Smith D A, et al. An electronically tunable fiber laser with a liquid-crystal etalon filter as the wavelength-tuning element[J]. IEEE Photonics Technology Letters, 1990, 2(11): 787-789. doi: 10.1109/68.63221

    [42]

    Smith D A, Maeda M W, Johnson J J, et al. Acoustically tuned erbium-doped fiber ring laser[J]. Optics Letters, 1991, 16(6): 387-389. doi: 10.1364/OL.16.000387

    [43]

    Zyskind J L, Sulhoff J W, Sun Y, et al. Singlemode diode-pumped tunable erbium-doped fibre laser with linewidth less than 5.5 kHz[J]. Electronics Letters, 1991, 27(23): 2148-2149. doi: 10.1049/el:19911330

    [44]

    Lin G R, Chang J Y, Liao Y S, et al. L-band erbium-doped fiber laser with coupling-ratio controlled wavelength tunability[J]. Optics Express, 2006, 14(21): 9743-9749. doi: 10.1364/OE.14.009743

    [45]

    Zhang A Q, Feng X H, Wan M G, et al. Tunable single frequency fiber laser based on FP-LD injection locking[J]. Optics Express, 2013, 21(10): 12874-12880. doi: 10.1364/OE.21.012874

    [46]

    Zhu T, Bao X Y, Chen L. A single longitudinal-mode tunable fiber ring laser based on stimulated rayleigh scattering in a nonuniform optical fiber[J]. Journal of Lightwave Technology, 2011, 29(12): 1802-1807. doi: 10.1109/JLT.2011.2142292

    [47]

    Zhu T, Zhang B M, Shi L L, et al. Tunable dual-wavelength fiber laser with ultra-narrow linewidth based on Rayleigh backscattering[J]. Optics Express, 2016, 24(2): 1324-1330. doi: 10.1364/OE.24.001324

    [48]

    Li Y J, Gao L, Zhu T, et al. Graphene-assisted all-fiber optical-controllable laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 0901709. http://ieeexplore.ieee.org/document/8085117/

    [49]

    Ye J, Cundiff S T. Femtosecond Optical Frequency Comb: Principle, Operation and Applications[M]. Norwell: Springer, 2004.

    [50]

    Al-Taiy H, Wenzel N, Preußler S, et al. Ultra-narrow linewidth, stable and tunable laser source for optical communication systems and spectroscopy[J]. Optics Letters, 2014, 39(20): 5826-5829. doi: 10.1364/OL.39.005826

    [51]

    Wang L, Cao Y, Wan M, et al. Tunable single-frequency fiber laser based on the spectral narrowing effect in a nonlinear semiconductor optical amplifier[J]. Optics Express, 2016, 24(26): 29705-29713. doi: 10.1364/OE.24.029705

    [52]

    Li Z, Alam S U, Jung Y, et al. All-fiber, ultra-wide band tunable laser at 2 μm[J]. Optics Letters, 2013, 38(22): 4739-4742. doi: 10.1364/OL.38.004739

    [53]

    Dudley J M, Genty G, Coen S. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 2006, 78(4): 1135-1184. doi: 10.1103/RevModPhys.78.1135

    [54]

    Kumar V V R K, George A K, Reeves W H, et al. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation[J]. Optics Express, 2002, 10(25): 1520-1525. doi: 10.1364/OE.10.001520

    [55]

    Wright L G, Christodoulides D N, Wise F W. Controllable spatiotemporal nonlinear effects in multimode fibres[J]. Nature Photonics, 2015, 9: 306-310. doi: 10.1038/nphoton.2015.61

  • 加载中

(10)

计量
  • 文章访问数:  12705
  • PDF下载数:  5447
  • 施引文献:  0
出版历程
收稿日期:  2017-10-09
修回日期:  2018-02-08
刊出日期:  2018-09-01

目录

/

返回文章
返回