Tong Weijun, Yang Chen, Liu Tongqing, et al. Progress and prospect of novel specialty fibers for fiber optic sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 180243. doi: 10.12086/oee.2018.180243
Citation: Tong Weijun, Yang Chen, Liu Tongqing, et al. Progress and prospect of novel specialty fibers for fiber optic sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 180243. doi: 10.12086/oee.2018.180243

Progress and prospect of novel specialty fibers for fiber optic sensing

    Fund Project: Supported by National Key R & D Program of China (2017YFB045500)
More Information
  • The paper reviews the major techniques of specialty fiber fabrication. It primarily reports the progress of panda-type polarization maintaining fiber, spun fiber, specialty fibers for harsh environment and those for novel distributed sensing applications. Compared with the sensing systems utilizing conventional communication fiber, the fiber optic sensors based on specialty fibers show evident advances in performance. Additionally, the development of specialty fibers facilitates the advent of novel sensing mechanisms.
  • 加载中
  • [1] 王廷云.特种光纤与光纤通信[M].上海:上海科学技术出版社, 2016.

    Google Scholar

    [2] 刘铁根, 王双, 江俊峰, 等.航空航天光纤传感技术研究进展[J].仪器仪表学报, 2014, 35(8): 1681-1692.

    Google Scholar

    Liu T G, Wang S, Jiang J F, et al. Advances in optical fiber sensing technology for aviation and aerospace application[J]. Chinese Journal of Scientific Instrument, 2014, 35(8): 1681-1692.

    Google Scholar

    [3] Takeda S I, Aoki Y, Nagao Y. Damage monitoring of CFRP stiffened panels under compressive load using FBG sensors[J]. Composite Structures, 2012, 94(3): 813-819. doi: 10.1016/j.compstruct.2011.02.020

    CrossRef Google Scholar

    [4] Dandridge A, Cogdell G B. Fiber optic sensors for navy applications[J]. IEEE LCS, 1991, 2(1): 81-89. doi: 10.1109/73.80443

    CrossRef Google Scholar

    [5] Peng W, Banerji S, Kim Y C, et al. Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications[J]. Optics Letters, 2005, 30(22): 2988-2990. doi: 10.1364/OL.30.002988

    CrossRef Google Scholar

    [6] Integrated Publishing, Inc. Fabrication of optical fibers[EB/OL]. http://www.tpub.com/neets/tm/107-5.htm.

    Google Scholar

    [7] Dutton H S. Understanding optical communications[EB/OL]. [2009-02-19]. http://medea.uib.es/salvador/coms-optiques,addicional/ibm/ch06/06-02.Html.

    Google Scholar

    [8] Stadnik D. Optical fiber technology[EB/OL]. http://csrgch.pw.edu.pl/tutorials/fiber.

    Google Scholar

    [9] Pfuch A, Heft A, Weidl R, et al. Characterization of SiO2 thin films prepared by plasma-activated chemical vapour deposition[J]. Surface and Coatings Technology, 2006, 201(1-2): 189-196. doi: 10.1016/j.surfcoat.2005.11.110

    CrossRef Google Scholar

    [10] Lefèvre H C. The Fiber-Optic Gyroscope[M]. London: Artech House Inc., 1993.

    Google Scholar

    [11] Bergh R A, Lefevre H C, Shaw H J. All-single-mode fiber-optic gyroscope[J]. Optics Letters, 1981, 6(4): 198-200. doi: 10.1364/OL.6.000198

    CrossRef Google Scholar

    [12] Sanders G A, Szafraniec B, Liu R Y, et al. Fiber optic gyros for space, marine, and aviation applications[J]. Proceeding of SPIE, 1996, 2837: 61-71. doi: 10.1117/12.258208

    CrossRef Google Scholar

    [13] Bohnert K, Gabus P, Kostovic J, et al. Optical fiber sensors for the electric power industry[J]. Optics and Lasers in Engineering, 2005, 43(3-5): 511-526. doi: 10.1016/j.optlaseng.2004.02.008

    CrossRef Google Scholar

    [14] Michie C. Polarimetric optical fiber sensors[M]//Yin S Z, Ruffin P B, Yu F T S. Fiber Optic Sensors. Boca Raton, FL: CRC Press, 2008.

    Google Scholar

    [15] Lin H, Huang S C. Fiber-optics multiplexed interferometric current sensors[J]. Sensors and Actuators A: Physical, 2005, 121(2): 333-338. doi: 10.1016/j.sna.2005.02.022

    CrossRef Google Scholar

    [16] Foroni M, Ruggeri L, Poli F, et al. S+C+L band double-pass EDFA[C]// Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications. Whistler Canada Washington, DC: OSA, 2006: JWB44.

    Google Scholar

    [17] Nix M, Yam S S H. Highly efficient dual wavelength pumping scheme for thulium-doped fiber amplifier[C]//Proceedings of the 19th Annual Meeting of the IEEE Lasers and electro-optics Society. Montreal, Que., Canada: IEEE, 2006: 390-391.

    Google Scholar

    [18] Miyazaki T, Inagaki K, Karasawa Y, et al. Nd-doped double-clad fiber amplifier at 1.06 μm[J]. Journal of Lightwave Technology, 1998, 16(4): 562-566. doi: 10.1109/50.664064

    CrossRef Google Scholar

    [19] Li M J. Bend-insensitive optical fibers for FTTH applications[J]. Proceedings of SPIE, 2009, 7234: 72340B. doi: 10.1117/12.816522

    CrossRef Google Scholar

    [20] 成煜, 李诗愈, 李进延, 等.抗弯光纤的理论研究与制造[J].光学与光电技术, 2005, 3(6): 38-40. doi: 10.3969/j.issn.1672-3392.2005.06.012

    CrossRef Google Scholar

    Cheng Y, Li S Y, Li J Y, et al. Theory research and manufacture of bend insensitive optical fiber[J]. Optics & Optoelectronic Technology, 2005, 3(6): 38-40. doi: 10.3969/j.issn.1672-3392.2005.06.012

    CrossRef Google Scholar

    [21] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639. doi: 10.3390/s120708601

    CrossRef Google Scholar

    [22] Bao X Y, Chen L. Recent progress in Brillouin scattering based fiber sensors[J]. Sensors, 2011, 11(4): 4152-4187.

    Google Scholar

    [23] Motil A, Bergman A, Tur M.[INVITED] State of the art of Brillouin fiber-optic distributed sensing[J]. Optics & Laser Technology, 2016, 78: 81-103.

    Google Scholar

    [24] Dong Y K, Chen L, Bao X Y. Time-division multiplexing-based BOTDA over 100km sensing length[J]. Optics Letters, 2011, 36(2): 277-279. doi: 10.1364/OL.36.000277

    CrossRef Google Scholar

    [25] Wang F, Zhang X P, Lu Y G, et al. Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry[J]. Measurement Science and Technology, 2009, 20(2): 025202. doi: 10.1088/0957-0233/20/2/025202

    CrossRef Google Scholar

    [26] Dong Y K, Zhang H Y, Chen L, et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair[J]. Applied Optics, 2012, 51(9): 1229-1235. doi: 10.1364/AO.51.001229

    CrossRef Google Scholar

    [27] Zhao Z Y, Soto M A, Tang M, et al. Distributed shape sensing using Brillouin scattering in multi-core fibers[J]. Optics Express, 2016, 24(22): 25211-25223. doi: 10.1364/OE.24.025211

    CrossRef Google Scholar

    [28] Zhao Z Y, Dang Y L, Tang M, et al. Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber[J]. Optics Letters, 2017, 42(1): 171-174. doi: 10.1364/OL.42.000171

    CrossRef Google Scholar

    [29] Zhao Z Y, Dang Y L, Tang M, et al. Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber[J]. Optics Express, 2016, 24(22): 25111-25118. doi: 10.1364/OE.24.025111

    CrossRef Google Scholar

    [30] Moore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions[J]. Optics Express, 2012, 20(3): 2967-2973. doi: 10.1364/OE.20.002967

    CrossRef Google Scholar

    [31] Moore J P. Shape sensing using multi-core fiber[C]//Proceedings of 2015 Optical Fiber Communications Conference and Exhibition. Los Angeles, CA, USA: IEEE, 2015: Th1C. 2.

    Google Scholar

    [32] NASA. Real-Time 3D Shape Rendering: CA 93523-0273[R]. USA: National Aeronautics and Space Administration, 2013.

    Google Scholar

    [33] Rogge M D, Moore J P. Shape sensing using a multi-core optical fiber having an arbitrary initial shape in the presence of extrinsic forces: US-Patent-8, 746, 076[P]. 2014-06-10.

    Google Scholar

    [34] Maughan S M, Kee H H, Newson T P. Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter[J]. Measurement Science and Technology, 2001, 12(7): 834-842. doi: 10.1088/0957-0233/12/7/315

    CrossRef Google Scholar

    [35] Soto M A, Bolognini G, Di Pasquale F. Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous Brillouin scattering and optical pulse coding[J]. IEEE Photonics Technology Letters, 2009, 21(7): 450-452. doi: 10.1109/LPT.2009.2012874

    CrossRef Google Scholar

    [36] Alahbabi M N, Cho Y T, Newson T P. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering[J]. Optics Letters, 2005, 30(11): 1276-1278. doi: 10.1364/OL.30.001276

    CrossRef Google Scholar

    [37] Bolognini G, Soto M A, Pasquale F D. Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry-Pérot lasers[J]. IEEE Photonics Technology Letters, 2009, 21(20): 1523-1525. doi: 10.1109/LPT.2009.2028899

    CrossRef Google Scholar

    [38] Bolognini G, Soto M A. Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers[J]. Optics Express, 2010, 18(8): 8459-8465. doi: 10.1364/OE.18.008459

    CrossRef Google Scholar

    [39] Taki M, Signorini A, Oton C J, et al. Hybrid Raman/Brillouin-optical-time-domain- analysis-distributed optical fiber sensors based on cyclic pulse coding[J]. Optics Letters, 2013, 38(20): 4162-4165. doi: 10.1364/OL.38.004162

    CrossRef Google Scholar

    [40] Sasaki Y, Takenaga K, Matsuo S, et al. Few-mode multicore fibers for long-haul transmission line[J]. Optical Fiber Technology, 2017, 35: 19-27. doi: 10.1016/j.yofte.2016.09.017

    CrossRef Google Scholar

    [41] Mizuno T, Takara H, Sano A, et al. Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber[J]. Journal of Lightwave Technology, 2016, 34(2): 582-592. doi: 10.1109/JLT.2015.2482901

    CrossRef Google Scholar

    [42] Mizuno T, Takara H, Shibahara K, et al. Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems[J]. Journal of Lightwave Technology, 2016, 34(6): 1484-1493. doi: 10.1109/JLT.2016.2524546

    CrossRef Google Scholar

    [43] Kumar A, Goel N K, Varshney R K. Studies on a few-mode fiber-optic strain sensor based on LP01-LP02 mode interference[J]. Journal of Lightwave Technology, 2001, 19(3): 358-362. doi: 10.1109/50.918888

    CrossRef Google Scholar

    [44] Chen J, Lu P, Liu D M, et al. Optical fiber curvature sensor based on few mode fiber[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(17): 4776-4778. doi: 10.1016/j.ijleo.2014.04.063

    CrossRef Google Scholar

    [45] Su J, Dong X P, Lu C X. Intensity detection scheme of sensors based on the modal interference effect of few mode fiber[J]. Measurement, 2016, 79: 182-187. doi: 10.1016/j.measurement.2015.09.049

    CrossRef Google Scholar

    [46] Salik E, Medrano M, Cohoon G, et al. SMS fiber sensor utilizing a few-mode fiber exhibits critical wavelength behavior[J]. IEEE Photonics Technology Letters, 2012, 24(7): 593-595. doi: 10.1109/LPT.2012.2184090

    CrossRef Google Scholar

    [47] Su J, Dong X P, Lu C X. Property of bent few-mode fiber and its application in displacement sensor[J]. IEEE Photonics Technology Letters, 2016, 28(13): 1387-1390. doi: 10.1109/LPT.2016.2542366

    CrossRef Google Scholar

    [48] Luo C, Lu P, Fu X, et al. All-fiber sensor based on few-mode fiber offset splicing structure cascaded with long-period fiber grating for curvature and acoustic measurement[J]. Photonic Network Communications, 2016, 32(2): 224-229. doi: 10.1007/s11107-016-0604-9

    CrossRef Google Scholar

    [49] Zhang J. Few-mode fiber based sensor in biomedical application[J]. Proceedings of SPIE, 2015, 9480: 94800O. doi: 10.1117/12.2177487

    CrossRef Google Scholar

    [50] Song K Y, Kim Y H. Characterization of stimulated Brillouin scattering in a few-mode fiber[J]. Optics Letters, 2013, 38(22): 4841-4844. doi: 10.1364/OL.38.004841

    CrossRef Google Scholar

    [51] Li A, Hu Q, Shieh W. Characterization of stimulated Brillouin scattering in a circular-core two-mode fiber using optical time-domain analysis[J]. Optics Express, 2013, 21(26): 31894-31906. doi: 10.1364/OE.21.031894

    CrossRef Google Scholar

    [52] Wu H, Wang R X, Liu D M, et al. Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift[J]. Optics Letters, 2016, 41(7): 1514-1517. doi: 10.1364/OL.41.001514

    CrossRef Google Scholar

  • Overview: The paper introduced four primary approaches for fiber core-rod preform fabrication: the MCVD (modified chemical vapor deposition) process, the PCVD (plasma chemical vapor deposition) process, the OVD (outside vapor deposition) process and the VAD (vapor axial deposition) process. Due to the flexible control of sophisticated refractive index profile and the capability of rare-earth element doping, the PCVD and MCVD processes are widely utilized for specialty fiber preform fabrication.

    The progresses of specialty fibers used for sensing were reviewed, organized in four sections, namely, specialty fibers based on polarization, functional specialty fibers as a gain medium for fiber-optic sensing, specialty fibers for harsh environment, and fibers for distributed sensing. The reduced-diameter polarization-maintaining fibers (PMF), such as PMFs with 80 μm (cladding)/135 μm (coating) and 60 μm/100 μm, have been developed to meet the demand of smaller-size gyroscope applications with comparable mechanical and optical performance. YOFC has successfully fabricated high-birefringence spun fiber for fiber-optic current transformer (FOCT) applications. The results of tested FOCT system with the spun fiber coil as the sensing element showed great agreement with temperature change; Rare-earth doped fibers, which are an essential part of fiber amplifiers and fiber lasers, have achieved high absorption coefficient and high light/light conversion efficiency for lasers. The 20/125 double-cladding ytterbium-doped fiber fabricated by YOFC has ensured a laser output of M2 < 1.5; Specialty fibers for harsh environment use also play a crucial role in fiber-optic sensing in various extreme environment applications. High strength bend-insensitive fibers have been developed in order to meet the requirement of optical hydrophone applications with 200 kpsi proof test and bending radius as small as less than 5 mm. The radiation hard fibers with pure silica core produced by YOFC have passed the test in the environment of up to 10000 Gy. For high temperature resistant fibers, test results showed the polyimide-coated fiber was able to withstand as high as 300 ℃ and also ensure the optical and mechanical properties; Additionally, the paper reviewed a number of novel specialty fibers that have been used in distributed sensing applications, such as the optimized multimode fiber (MMF) for distributed temperature sensing (DTS), few-mode fiber (FMF) for DTS. The results showed the DTS system employing the optimized MMF and FMF could effectively extend the measurement range without deterioration of the spatial resolution and temperature resolution. Also, the Brillouin optical time domain analysis systems based on multicore fibers and FMF have been reported for distributed shape sensing.

    In conclusion, the paper reviewed the progress of specialty fibers used for fiber sensing and envisioned the trend of specialty fibers to be more compact, more robust, and suitable for extreme environment.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(14)

Tables(3)

Article Metrics

Article views(12407) PDF downloads(8101) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint