光纤传感用新型特种光纤的研究进展与展望

童维军, 杨晨, 刘彤庆, 等. 光纤传感用新型特种光纤的研究进展与展望[J]. 光电工程, 2018, 45(9): 180243. doi: 10.12086/oee.2018.180243
引用本文: 童维军, 杨晨, 刘彤庆, 等. 光纤传感用新型特种光纤的研究进展与展望[J]. 光电工程, 2018, 45(9): 180243. doi: 10.12086/oee.2018.180243
Tong Weijun, Yang Chen, Liu Tongqing, et al. Progress and prospect of novel specialty fibers for fiber optic sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 180243. doi: 10.12086/oee.2018.180243
Citation: Tong Weijun, Yang Chen, Liu Tongqing, et al. Progress and prospect of novel specialty fibers for fiber optic sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 180243. doi: 10.12086/oee.2018.180243

光纤传感用新型特种光纤的研究进展与展望

  • 基金项目:
    国家重点研发计划“先进光纤传感材料与器件关键技术及应用”(2017YFB0405500)
详细信息
    作者简介:
    通讯作者: 刘彤庆(1986-),男,博士,主要从事新型光纤传感技术的研究。E-mail: liutongqing@yofc.com
  • 中图分类号: O436.3;TN253

Progress and prospect of novel specialty fibers for fiber optic sensing

  • Fund Project: Supported by National Key R & D Program of China (2017YFB045500)
More Information
  • 本文介绍了主流的特种光纤制备技术及其特点,并根据特种光纤在众多光纤传感领域的应用实例报道了熊猫型保偏光纤、旋转光纤、特殊环境用光纤以及分布式光纤传感用的新型光纤等特种光纤的研发方向及取得的成果。相比传统采用通信光纤的传感应用,基于特种光纤的光纤传感展现出明显的性能优势,并且衍生出多种新型传感机理的光纤传感系统。

  • Overview: The paper introduced four primary approaches for fiber core-rod preform fabrication: the MCVD (modified chemical vapor deposition) process, the PCVD (plasma chemical vapor deposition) process, the OVD (outside vapor deposition) process and the VAD (vapor axial deposition) process. Due to the flexible control of sophisticated refractive index profile and the capability of rare-earth element doping, the PCVD and MCVD processes are widely utilized for specialty fiber preform fabrication.

    The progresses of specialty fibers used for sensing were reviewed, organized in four sections, namely, specialty fibers based on polarization, functional specialty fibers as a gain medium for fiber-optic sensing, specialty fibers for harsh environment, and fibers for distributed sensing. The reduced-diameter polarization-maintaining fibers (PMF), such as PMFs with 80 μm (cladding)/135 μm (coating) and 60 μm/100 μm, have been developed to meet the demand of smaller-size gyroscope applications with comparable mechanical and optical performance. YOFC has successfully fabricated high-birefringence spun fiber for fiber-optic current transformer (FOCT) applications. The results of tested FOCT system with the spun fiber coil as the sensing element showed great agreement with temperature change; Rare-earth doped fibers, which are an essential part of fiber amplifiers and fiber lasers, have achieved high absorption coefficient and high light/light conversion efficiency for lasers. The 20/125 double-cladding ytterbium-doped fiber fabricated by YOFC has ensured a laser output of M2 < 1.5; Specialty fibers for harsh environment use also play a crucial role in fiber-optic sensing in various extreme environment applications. High strength bend-insensitive fibers have been developed in order to meet the requirement of optical hydrophone applications with 200 kpsi proof test and bending radius as small as less than 5 mm. The radiation hard fibers with pure silica core produced by YOFC have passed the test in the environment of up to 10000 Gy. For high temperature resistant fibers, test results showed the polyimide-coated fiber was able to withstand as high as 300 ℃ and also ensure the optical and mechanical properties; Additionally, the paper reviewed a number of novel specialty fibers that have been used in distributed sensing applications, such as the optimized multimode fiber (MMF) for distributed temperature sensing (DTS), few-mode fiber (FMF) for DTS. The results showed the DTS system employing the optimized MMF and FMF could effectively extend the measurement range without deterioration of the spatial resolution and temperature resolution. Also, the Brillouin optical time domain analysis systems based on multicore fibers and FMF have been reported for distributed shape sensing.

    In conclusion, the paper reviewed the progress of specialty fibers used for fiber sensing and envisioned the trend of specialty fibers to be more compact, more robust, and suitable for extreme environment.

  • 加载中
  • 图 1  80/135保偏光纤机械可靠性

    Figure 1.  The proof testing of 80/135 PMF

    图 2  60/100保偏光纤可靠性

    Figure 2.  The proof testing of 60/100 PMF

    图 3  (a) 80/135,(b) 60/100保偏光纤全温度范围串音性能

    Figure 3.  The test result of (a) 80/135 and (b) 60/100 PMF on polarization crosstalk

    图 4  旋转光纤保圆机理示意图

    Figure 4.  The schematics of spun fiber operation principle

    图 5  长飞旋转光纤的比差随温度变化曲线

    Figure 5.  The test result of FOCT performance during temperature fluctuation

    图 6  20/125光束质量测试结果

    Figure 6.  The quality of fiber laser beam using 20/125 YDF

    图 7  (a) 915 nm泵浦光光转换效率;(b) 1400 W连续稳定性测试

    Figure 7.  (a) The light-to-light conversion efficiency of fiber laser; (b) The output power fluctuation at 1400 W

    图 8  长飞公司PI光纤的高温性能(1100 h,附加损耗小于0.3 dB/km)

    Figure 8.  The induced attenuation of PI fiber at 300 ℃ (1100 h, the total induced attenuation is less than 0.3 dB/km)

    图 9  DTSF折射率剖面设计图

    Figure 9.  The refractive index profile of the MMF for temperature sensing

    图 10  (a) DTSF衰减谱;(b) DTSF带宽

    Figure 10.  (a) The attenuation spectrum and (b) bandwidth of DTSF

    图 11  (a) 长飞测温少模光纤温度分辨率曲线图;(b)长飞测温少模光纤空间分辨率曲线图

    Figure 11.  (a) The temperature resolution of DTS based on FMF; (b) The spatial resolution of DTS based on FMF

    图 12  偏心纤芯中布里渊频移表现出强烈的弯曲敏感特性[27]

    Figure 12.  The curvature sensitivity of multifore fiber in terms of Brillouin gain spectrum[27]

    图 13  (a) 实验所用的异质多芯光纤的横截面视图;(b)径向相对折射率分布[27]

    Figure 13.  (a) The cross section of multicore fiber; (b) The refractive index profile of multicore fiber[27]

    图 14  布里渊频移变化量随弯曲半径关系[52]

    Figure 14.  The Brillouin frequency shift of SMF and FMF vs. bending radius[52]

    表 1  四大主要光纤预制棒制备技术

    Table 1.  Introduction to four major perform fabrication processes

    工艺 发明公司 发明时间 沉积方式 加热方式 主要产品
    MCVD 美国贝尔实验室 1974年 管内法-径向 氢氧焰 掺稀土光纤
    PCVD 荷兰飞利浦公司 1975年 管内法-径向 等离子体 通信光纤、多模光纤、特种光纤
    OVD 美国康宁公司 1976年 管外法-径向 氢氧焰 通信光纤
    VAD 日本NT & T 1977年 管外法-轴向 氢氧焰 通信光纤
    下载: 导出CSV

    表 2  四种制棒工艺比较

    Table 2.  Comparison of the four major perform fabrication processes

    工艺 沉积速率 反应效率 制备复杂剖面
    PCVD ☆☆☆ ☆☆☆
    VAD ☆☆ ☆☆
    OVD ☆☆☆ ☆☆
    MCVD ☆☆ ☆☆
    下载: 导出CSV

    表 3  PCVD工艺和MCVD工艺制备的特种光纤

    Table 3.  The features of PCVD and MCVD processes

    特种光纤制棒工艺 产品类型 主要产品 代表公司
    PCVD 无源特种光纤 保偏光纤、色散补偿光纤、抗弯曲光纤、大芯径传能光纤、抗辐射光纤、耐高温光纤、紫外光纤等 长飞、Draka等
    MCVD 有源光纤 掺镱光纤、掺铒光纤、掺铋光纤等 Nufern、长飞、Fibrecore等
    下载: 导出CSV
  • [1]

    王廷云.特种光纤与光纤通信[M].上海:上海科学技术出版社, 2016.

    [2]

    刘铁根, 王双, 江俊峰, 等.航空航天光纤传感技术研究进展[J].仪器仪表学报, 2014, 35(8): 1681-1692. http://d.old.wanfangdata.com.cn/Periodical/yqyb201408001

    Liu T G, Wang S, Jiang J F, et al. Advances in optical fiber sensing technology for aviation and aerospace application[J]. Chinese Journal of Scientific Instrument, 2014, 35(8): 1681-1692. http://d.old.wanfangdata.com.cn/Periodical/yqyb201408001

    [3]

    Takeda S I, Aoki Y, Nagao Y. Damage monitoring of CFRP stiffened panels under compressive load using FBG sensors[J]. Composite Structures, 2012, 94(3): 813-819. doi: 10.1016/j.compstruct.2011.02.020

    [4]

    Dandridge A, Cogdell G B. Fiber optic sensors for navy applications[J]. IEEE LCS, 1991, 2(1): 81-89. doi: 10.1109/73.80443

    [5]

    Peng W, Banerji S, Kim Y C, et al. Investigation of dual-channel fiber-optic surface plasmon resonance sensing for biological applications[J]. Optics Letters, 2005, 30(22): 2988-2990. doi: 10.1364/OL.30.002988

    [6]

    Integrated Publishing, Inc. Fabrication of optical fibers[EB/OL]. http://www.tpub.com/neets/tm/107-5.htm.

    [7]

    Dutton H S. Understanding optical communications[EB/OL]. [2009-02-19]. http://medea.uib.es/salvador/coms-optiques,addicional/ibm/ch06/06-02.Html.

    [8]

    Stadnik D. Optical fiber technology[EB/OL]. http://csrgch.pw.edu.pl/tutorials/fiber.

    [9]

    Pfuch A, Heft A, Weidl R, et al. Characterization of SiO2 thin films prepared by plasma-activated chemical vapour deposition[J]. Surface and Coatings Technology, 2006, 201(1-2): 189-196. doi: 10.1016/j.surfcoat.2005.11.110

    [10]

    Lefèvre H C. The Fiber-Optic Gyroscope[M]. London: Artech House Inc., 1993.

    [11]

    Bergh R A, Lefevre H C, Shaw H J. All-single-mode fiber-optic gyroscope[J]. Optics Letters, 1981, 6(4): 198-200. doi: 10.1364/OL.6.000198

    [12]

    Sanders G A, Szafraniec B, Liu R Y, et al. Fiber optic gyros for space, marine, and aviation applications[J]. Proceeding of SPIE, 1996, 2837: 61-71. doi: 10.1117/12.258208

    [13]

    Bohnert K, Gabus P, Kostovic J, et al. Optical fiber sensors for the electric power industry[J]. Optics and Lasers in Engineering, 2005, 43(3-5): 511-526. doi: 10.1016/j.optlaseng.2004.02.008

    [14]

    Michie C. Polarimetric optical fiber sensors[M]//Yin S Z, Ruffin P B, Yu F T S. Fiber Optic Sensors. Boca Raton, FL: CRC Press, 2008.

    [15]

    Lin H, Huang S C. Fiber-optics multiplexed interferometric current sensors[J]. Sensors and Actuators A: Physical, 2005, 121(2): 333-338. doi: 10.1016/j.sna.2005.02.022

    [16]

    Foroni M, Ruggeri L, Poli F, et al. S+C+L band double-pass EDFA[C]// Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications. Whistler Canada Washington, DC: OSA, 2006: JWB44.

    [17]

    Nix M, Yam S S H. Highly efficient dual wavelength pumping scheme for thulium-doped fiber amplifier[C]//Proceedings of the 19th Annual Meeting of the IEEE Lasers and electro-optics Society. Montreal, Que., Canada: IEEE, 2006: 390-391.

    [18]

    Miyazaki T, Inagaki K, Karasawa Y, et al. Nd-doped double-clad fiber amplifier at 1.06 μm[J]. Journal of Lightwave Technology, 1998, 16(4): 562-566. doi: 10.1109/50.664064

    [19]

    Li M J. Bend-insensitive optical fibers for FTTH applications[J]. Proceedings of SPIE, 2009, 7234: 72340B. doi: 10.1117/12.816522

    [20]

    成煜, 李诗愈, 李进延, 等.抗弯光纤的理论研究与制造[J].光学与光电技术, 2005, 3(6): 38-40. doi: 10.3969/j.issn.1672-3392.2005.06.012

    Cheng Y, Li S Y, Li J Y, et al. Theory research and manufacture of bend insensitive optical fiber[J]. Optics & Optoelectronic Technology, 2005, 3(6): 38-40. doi: 10.3969/j.issn.1672-3392.2005.06.012

    [21]

    Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639. doi: 10.3390/s120708601

    [22]

    Bao X Y, Chen L. Recent progress in Brillouin scattering based fiber sensors[J]. Sensors, 2011, 11(4): 4152-4187. http://d.old.wanfangdata.com.cn/OAPaper/oai_doaj-articles_8074fc1bfe3533b3b415471a3ba087c7

    [23]

    Motil A, Bergman A, Tur M.[INVITED] State of the art of Brillouin fiber-optic distributed sensing[J]. Optics & Laser Technology, 2016, 78: 81-103. http://www.sciencedirect.com/science/article/pii/S0030399215002571

    [24]

    Dong Y K, Chen L, Bao X Y. Time-division multiplexing-based BOTDA over 100km sensing length[J]. Optics Letters, 2011, 36(2): 277-279. doi: 10.1364/OL.36.000277

    [25]

    Wang F, Zhang X P, Lu Y G, et al. Spatial resolution analysis for discrete Fourier transform-based Brillouin optical time domain reflectometry[J]. Measurement Science and Technology, 2009, 20(2): 025202. doi: 10.1088/0957-0233/20/2/025202

    [26]

    Dong Y K, Zhang H Y, Chen L, et al. 2 cm spatial-resolution and 2 km range Brillouin optical fiber sensor using a transient differential pulse pair[J]. Applied Optics, 2012, 51(9): 1229-1235. doi: 10.1364/AO.51.001229

    [27]

    Zhao Z Y, Soto M A, Tang M, et al. Distributed shape sensing using Brillouin scattering in multi-core fibers[J]. Optics Express, 2016, 24(22): 25211-25223. doi: 10.1364/OE.24.025211

    [28]

    Zhao Z Y, Dang Y L, Tang M, et al. Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber[J]. Optics Letters, 2017, 42(1): 171-174. doi: 10.1364/OL.42.000171

    [29]

    Zhao Z Y, Dang Y L, Tang M, et al. Spatial-division multiplexed hybrid Raman and Brillouin optical time-domain reflectometry based on multi-core fiber[J]. Optics Express, 2016, 24(22): 25111-25118. doi: 10.1364/OE.24.025111

    [30]

    Moore J P, Rogge M D. Shape sensing using multi-core fiber optic cable and parametric curve solutions[J]. Optics Express, 2012, 20(3): 2967-2973. doi: 10.1364/OE.20.002967

    [31]

    Moore J P. Shape sensing using multi-core fiber[C]//Proceedings of 2015 Optical Fiber Communications Conference and Exhibition. Los Angeles, CA, USA: IEEE, 2015: Th1C. 2.

    [32]

    NASA. Real-Time 3D Shape Rendering: CA 93523-0273[R]. USA: National Aeronautics and Space Administration, 2013.

    [33]

    Rogge M D, Moore J P. Shape sensing using a multi-core optical fiber having an arbitrary initial shape in the presence of extrinsic forces: US-Patent-8, 746, 076[P]. 2014-06-10.

    [34]

    Maughan S M, Kee H H, Newson T P. Simultaneous distributed fibre temperature and strain sensor using microwave coherent detection of spontaneous Brillouin backscatter[J]. Measurement Science and Technology, 2001, 12(7): 834-842. doi: 10.1088/0957-0233/12/7/315

    [35]

    Soto M A, Bolognini G, Di Pasquale F. Enhanced simultaneous distributed strain and temperature fiber sensor employing spontaneous Brillouin scattering and optical pulse coding[J]. IEEE Photonics Technology Letters, 2009, 21(7): 450-452. doi: 10.1109/LPT.2009.2012874

    [36]

    Alahbabi M N, Cho Y T, Newson T P. Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering[J]. Optics Letters, 2005, 30(11): 1276-1278. doi: 10.1364/OL.30.001276

    [37]

    Bolognini G, Soto M A, Pasquale F D. Fiber-optic distributed sensor based on hybrid Raman and Brillouin scattering employing multiwavelength Fabry-Pérot lasers[J]. IEEE Photonics Technology Letters, 2009, 21(20): 1523-1525. doi: 10.1109/LPT.2009.2028899

    [38]

    Bolognini G, Soto M A. Optical pulse coding in hybrid distributed sensing based on Raman and Brillouin scattering employing Fabry-Perot lasers[J]. Optics Express, 2010, 18(8): 8459-8465. doi: 10.1364/OE.18.008459

    [39]

    Taki M, Signorini A, Oton C J, et al. Hybrid Raman/Brillouin-optical-time-domain- analysis-distributed optical fiber sensors based on cyclic pulse coding[J]. Optics Letters, 2013, 38(20): 4162-4165. doi: 10.1364/OL.38.004162

    [40]

    Sasaki Y, Takenaga K, Matsuo S, et al. Few-mode multicore fibers for long-haul transmission line[J]. Optical Fiber Technology, 2017, 35: 19-27. doi: 10.1016/j.yofte.2016.09.017

    [41]

    Mizuno T, Takara H, Sano A, et al. Dense space-division multiplexed transmission systems using multi-core and multi-mode fiber[J]. Journal of Lightwave Technology, 2016, 34(2): 582-592. doi: 10.1109/JLT.2015.2482901

    [42]

    Mizuno T, Takara H, Shibahara K, et al. Dense space division multiplexed transmission over multicore and multimode fiber for long-haul transport systems[J]. Journal of Lightwave Technology, 2016, 34(6): 1484-1493. doi: 10.1109/JLT.2016.2524546

    [43]

    Kumar A, Goel N K, Varshney R K. Studies on a few-mode fiber-optic strain sensor based on LP01-LP02 mode interference[J]. Journal of Lightwave Technology, 2001, 19(3): 358-362. doi: 10.1109/50.918888

    [44]

    Chen J, Lu P, Liu D M, et al. Optical fiber curvature sensor based on few mode fiber[J]. Optik-International Journal for Light and Electron Optics, 2014, 125(17): 4776-4778. doi: 10.1016/j.ijleo.2014.04.063

    [45]

    Su J, Dong X P, Lu C X. Intensity detection scheme of sensors based on the modal interference effect of few mode fiber[J]. Measurement, 2016, 79: 182-187. doi: 10.1016/j.measurement.2015.09.049

    [46]

    Salik E, Medrano M, Cohoon G, et al. SMS fiber sensor utilizing a few-mode fiber exhibits critical wavelength behavior[J]. IEEE Photonics Technology Letters, 2012, 24(7): 593-595. doi: 10.1109/LPT.2012.2184090

    [47]

    Su J, Dong X P, Lu C X. Property of bent few-mode fiber and its application in displacement sensor[J]. IEEE Photonics Technology Letters, 2016, 28(13): 1387-1390. doi: 10.1109/LPT.2016.2542366

    [48]

    Luo C, Lu P, Fu X, et al. All-fiber sensor based on few-mode fiber offset splicing structure cascaded with long-period fiber grating for curvature and acoustic measurement[J]. Photonic Network Communications, 2016, 32(2): 224-229. doi: 10.1007/s11107-016-0604-9

    [49]

    Zhang J. Few-mode fiber based sensor in biomedical application[J]. Proceedings of SPIE, 2015, 9480: 94800O. doi: 10.1117/12.2177487

    [50]

    Song K Y, Kim Y H. Characterization of stimulated Brillouin scattering in a few-mode fiber[J]. Optics Letters, 2013, 38(22): 4841-4844. doi: 10.1364/OL.38.004841

    [51]

    Li A, Hu Q, Shieh W. Characterization of stimulated Brillouin scattering in a circular-core two-mode fiber using optical time-domain analysis[J]. Optics Express, 2013, 21(26): 31894-31906. doi: 10.1364/OE.21.031894

    [52]

    Wu H, Wang R X, Liu D M, et al. Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift[J]. Optics Letters, 2016, 41(7): 1514-1517. doi: 10.1364/OL.41.001514

  • 加载中

(14)

(3)

计量
  • 文章访问数:  12872
  • PDF下载数:  8231
  • 施引文献:  0
出版历程
收稿日期:  2018-03-09
修回日期:  2018-05-09
刊出日期:  2018-09-01

目录

/

返回文章
返回