Wang Chao, Huang Heyong, Meng Donghui, et al. Hollow-core photonic bandgap fibers: properties and sensing technology[J]. Opto-Electronic Engineering, 2018, 45(9): 180151. doi: 10.12086/oee.2018.180151
Citation: Wang Chao, Huang Heyong, Meng Donghui, et al. Hollow-core photonic bandgap fibers: properties and sensing technology[J]. Opto-Electronic Engineering, 2018, 45(9): 180151. doi: 10.12086/oee.2018.180151

Hollow-core photonic bandgap fibers: properties and sensing technology

    Fund Project: Supported by National Natural Science Foundation of China (61535004), CAST-BISEE Innovation Foundation (CAST-BISEE2017-015), and Basic Research Foundations of Wuhan University
More Information
  • In this paper, the unique properties of the hollow-core photonic bandgap fiber (HC-PBF) are reviewed, and a variety of sensing and device applications of this type of fiber in recent years are introduced. Low-loss light transmission in air core is an important characteristic of the HC-PBF, which provides light-matter interaction channel with high energy density and long interaction distance. In addition, the air-propagation of the light in fiber also reduces the impacts of fiber material properties (such as infrared absorption, thermos-optical effect) on propagating light, hence offers an efficient platform for the sensing applications such as trace gas/liquid detection, optical fiber gyro sensing. The fine micro-structure in HC-PBF exhibits novel mechanical and thermal properties, which would be beneficial to the sensing applications such as sound wave and vibration detection. The HC-PBF's porous structure can also be locally modified by using various post-processing techniques, such as local heat treatment, micromachining and selective filling, which would enable further function extension or performance enhancement. The flexibility of the fiber has been used to develop new optical fiber devices, such as grating, polarizer and polarization interferometer. At present, the development of HC-PBF sensing technology has greatly expanded the sensing ability and application range of optical fiber. It is an important direction for the development of all-optical devices and optical integration technology.
  • 加载中
  • [1] Russell P. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358-362. doi: 10.1126/science.1079280

    CrossRef Google Scholar

    [2] Poletti F, Wheeler N V, Petrovich M N, et al. Towards high-capacity fibre-optic communications at the speed of light in vacuum[J]. Nature Photonics, 2013, 7(4): 279-284. doi: 10.1038/nphoton.2013.45

    CrossRef Google Scholar

    [3] Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537-1539. doi: 10.1126/science.285.5433.1537

    CrossRef Google Scholar

    [4] Poletti F, Petrovich M N, Richardson D J. Hollow-core photonic bandgap fibers: technology and applications[J]. Nanophotonics, 2013, 2(5-6): 315-340.

    Google Scholar

    [5] Poletti F. Hollow core fiber with an octave spanning bandgap[J]. Optics Letters, 2010, 35(17): 2837-2839. doi: 10.1364/OL.35.002837

    CrossRef Google Scholar

    [6] Hollow-core photonic bandgap fiber (model HC-1550) datasheet from website of NKT Photonics Corporation[OL]. https://www.nktphotonics.com/lasers-fibers/product/hollow-core-photonic-crystal-fibers/.

    Google Scholar

    [7] Roberts P J, Couny F, Sabert H, et al. Ultimate low loss of hollow-core photonic crystal fibres[J]. Optics Express, 2005, 13(1): 236-244. doi: 10.1364/OPEX.13.000236

    CrossRef Google Scholar

    [8] Petrovich M N, Poletti F, Van Brakel A, et al. Robustly single mode hollow core photonic bandgap fiber[J]. Optics Express, 2008, 16(6): 4337-4346. doi: 10.1364/OE.16.004337

    CrossRef Google Scholar

    [9] Digonnet M J F, Kim H K, Kino G S, et al. Understanding air-core photonic-bandgap fibers: analogy to conventional fibers[J]. Journal of Lightwave Technology, 2006, 23(12): 4169-4177.

    Google Scholar

    [10] Fini J M, Nicholson J W, Mangan B, et al. Polarization maintaining single-mode low-loss hollow-core fibres[J]. Nature Communications, 2014, 5: 5085. doi: 10.1038/ncomms6085

    CrossRef Google Scholar

    [11] Kim H K, Shin J, Fan S H, et al. Designing air-core photonic-bandgap fibers free of surface modes[J]. IEEE Journal of Quantum Electronics, 2004, 40(5): 551-556. doi: 10.1109/JQE.2004.826429

    CrossRef Google Scholar

    [12] West J A, Smith C M, Borrelli N F, et al. Surface modes in air-core photonic band-gap fibers[J]. Optics Express, 2004, 12(8): 1485-1496. doi: 10.1364/OPEX.12.001485

    CrossRef Google Scholar

    [13] Yang F, Jin W, Cao Y C, et al. Towards high sensitivity gas detection with hollow-core photonic bandgap fibers[J]. Optics Express, 2014, 22(20): 24894-24907. doi: 10.1364/OE.22.024894

    CrossRef Google Scholar

    [14] Fini J M, Nicholson J W, Windeler R S, et al. Low-loss hollow-core fibers with improved single-modedness[J]. Optics Express, 2013, 21(5): 6233-6242. doi: 10.1364/OE.21.006233

    CrossRef Google Scholar

    [15] Wegmuller M, Legré M, Gisin N, et al. Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm[J]. Optics Express, 2005, 13(5): 1457-1467. doi: 10.1364/OPEX.13.001457

    CrossRef Google Scholar

    [16] Poletti F, Broderick N G R, Richardson D J, et al. The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers[J]. Optics Express, 2005, 13(22): 9115-9124. doi: 10.1364/OPEX.13.009115

    CrossRef Google Scholar

    [17] Bouwmans G, Luan F, Knight J C, et al. Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength[J]. Optics Express, 2003, 11(14): 1613-1620. doi: 10.1364/OE.11.001613

    CrossRef Google Scholar

    [18] Wen H, Terrel M A, Kim H K, Digonnet M J F, Fan S, Measurements of the Birefringence and Verdet Constant in an Air-Core Fiber[J]. Journal of Lightwave Technology, 2009, 27(15): 3194-3101. doi: 10.1109/JLT.2008.2009546

    CrossRef Google Scholar

    [19] Alam M S, Saitoh K, Koshiba M. High group birefringence in air-core photonic bandgap fibers[J]. Optics Letters, 2005, 30(8): 824-826. doi: 10.1364/OL.30.000824

    CrossRef Google Scholar

    [20] Roberts P J, Williams D P, Sabert H, et al. Design of low-loss and highly birefringent hollow-core photonic crystal fiber[J]. Optics Express, 2006, 14(16): 7329-7341. doi: 10.1364/OE.14.007329

    CrossRef Google Scholar

    [21] Hansen T P, Broeng J, Jakobsen C, et al. Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling[J]. Journal of Lightwave Technology, 2004, 22(1): 11-15. doi: 10.1109/JLT.2003.822833

    CrossRef Google Scholar

    [22] Wheeler N V, Heidt A M, Baddela N K, et al. Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber[J]. Optics Letters, 2014, 39(2): 295-298. doi: 10.1364/OL.39.000295

    CrossRef Google Scholar

    [23] Slavík R, Marra G, Fokoua E N, et al. Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres[J]. Scientific Reports, 2015, 5: 15447. doi: 10.1038/srep15447

    CrossRef Google Scholar

    [24] Dangui V, Kim H K, Digonnet M J F, et al. Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers[J]. Optics Express, 2005, 13(18): 6669-6684. doi: 10.1364/OPEX.13.006669

    CrossRef Google Scholar

    [25] Jones D C, Bennett C R, Smith M A, et al. High-power beam transport through a hollow-core photonic bandgap fiber[J]. Optics Letters, 2014, 39(11): 3122-3125. doi: 10.1364/OL.39.003122

    CrossRef Google Scholar

    [26] Jin W, Cao Y C, Yang F, et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range[J]. Nature Communications, 2015, 6: 6767. doi: 10.1038/ncomms7767

    CrossRef Google Scholar

    [27] Hoo Y L, Jin W, Ho H L, et al. Gas diffusion measurement using hollow-core photonic bandgap fiber[J]. Sensors and Actuators B: Chemical, 2005, 105(2): 183-186. doi: 10.1016/j.snb.2004.05.059

    CrossRef Google Scholar

    [28] Ritari T, Tuominen J, Ludvigsen H, et al. Gas sensing using air-guiding photonic bandgap fibers[J]. Optics Express, 2004, 12(17): 4080-4087. doi: 10.1364/OPEX.12.004080

    CrossRef Google Scholar

    [29] Magalhaes F, Carvalho J P, Ferreira L A, et al. Methane detection system based on wavelength modulation spectroscopy and hollow-core fibres[C]//Proceedings of 2008 IEEE SENSORS, 2008: 1277-1280.

    Google Scholar

    [30] Parry J P, Griffiths B C, Gayraud N, et al. Towards practical gas sensing with micro-structured fibres[J]. Measurement Science and Technology, 2009, 20(7): 075301. doi: 10.1088/0957-0233/20/7/075301

    CrossRef Google Scholar

    [31] Wynne R M, Barabadi B, Creedon K J, et al. Sub-minute response time of a hollow-core photonic bandgap fiber gas sensor[J]. Journal of Lightwave Technology, 2009, 27(11): 1590-1596. doi: 10.1109/JLT.2009.2019258

    CrossRef Google Scholar

    [32] Nwaboh J A, Hald J, Lyngsø J K, et al. Measurements of CO2 in a multipass cell and in a hollow-core photonic bandgap fiber at 2 μm[J]. Applied Physics B, 2013, 110(2): 187-194. doi: 10.1007/s00340-012-5047-0

    CrossRef Google Scholar

    [33] Benabid F, Couny F, Knight J C, et al. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres[J]. Nature, 2005, 434(7032): 488-491. doi: 10.1038/nature03349

    CrossRef Google Scholar

    [34] Xiao L M, Demokan M S, Jin W, et al. Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect[J]. Journal of Lightwave Technology, 2007, 25(11): 3563-3574. doi: 10.1109/JLT.2007.907787

    CrossRef Google Scholar

    [35] Benabid F. Photonic microcells[C]//Proceedings of Advanced Photonics Congress, 2012.

    Google Scholar

    [36] Hoo Y L, Liu S J, Ho H L, et al. Fast response microstructured optical fiber methane sensor with multiple side-openings[J]. IEEE Photonics Technology Letters, 2010, 22(5): 296-298. doi: 10.1109/LPT.2009.2039016

    CrossRef Google Scholar

    [37] Lehmann H, Brueckner S, Kobelke J, et al. Toward photonic crystal fiber based distributed chemosensors[J]. Proceedings of the SPIE, 2005, 5855: 419-422. doi: 10.1117/12.623667

    CrossRef Google Scholar

    [38] Li X F, Liang J X, Oigawa H, et al. Doubled optical path length for photonic bandgap fiber gas cell using micromirror[J]. Japanese Journal of Applied Physics, 2011, 50(6): 06GM01.

    Google Scholar

    [39] van Brakel A, Grivas C, Petrovich M N, et al. Micro-channels machined in microstructured optical fibers by femtosecond laser[J]. Optics Express, 2007, 15(14): 8731-8736. doi: 10.1364/OE.15.008731

    CrossRef Google Scholar

    [40] Yang F, Jin W, Lin Y C, et al. Hollow-core microstructured optical fiber gas sensors[J]. Journal of Lightwave Technology, 2017, 35(16): 3413-3424. doi: 10.1109/JLT.2016.2628092

    CrossRef Google Scholar

    [41] Lin Y C, Wei J, Yang F, et al. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre[J]. Scientific Reports, 2016, 6: 39410. doi: 10.1038/srep39410

    CrossRef Google Scholar

    [42] Tan Y Z, Jin W, Yang F, et al. Hollow-core fiber-based high finesse resonating cavity for high sensitivity gas detection[J]. Journal of Lightwave Technology, 2017, 35(14): 2887-2893. doi: 10.1109/JLT.2017.2705229

    CrossRef Google Scholar

    [43] Yang F, Jin W. All-fiber hydrogen sensor based on stimulated Raman gain spectroscopy with a 1550 nm hollow-core fiber[C]//Proceedings of 25th Optical Fiber Sensors Conference (OFS), 2017: 4.

    Google Scholar

    [44] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639. doi: 10.3390/s120708601

    CrossRef Google Scholar

    [45] Jin W, Ho H L, Cao Y C, et al. Gas detection with micro- and nano-engineered optical fibers[J]. Optical Fiber Technology, 2013, 19(6): 741-759. doi: 10.1016/j.yofte.2013.08.004

    CrossRef Google Scholar

    [46] Lin Y C, Liu F, He X G, et al. Distributed gas sensing with optical fibre photothermal interferometry[J]. Optics Express, 2017, 25(25): 31568-31585. doi: 10.1364/OE.25.031568

    CrossRef Google Scholar

    [47] Xiao L M, Jin W, Demokan M S, et al. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer[J]. Optics Express, 2005, 13(22): 9014-9022. doi: 10.1364/OPEX.13.009014

    CrossRef Google Scholar

    [48] Cordeiro C M B, dos Santos E M, Cruz C H B, et al. Lateral access to the holes of photonic crystal fibers-selective filling and sensing applications[J]. Optics Express, 2006, 14(18): 8403-8412. doi: 10.1364/OE.14.008403

    CrossRef Google Scholar

    [49] Huang Y Y, Xu Y, Yariv A. Fabrication of functional microstructured optical fibers through a selective-filling technique[J]. Applied Physics Letters, 2004, 85(22): 5182-5184. doi: 10.1063/1.1828593

    CrossRef Google Scholar

    [50] Bozolan A, Gerosa R M, de Matos C J S, et al. Temperature sensing using colloidal-core photonic crystal fiber[J]. IEEE Sensors Journal, 2012, 12(1): 195-200. doi: 10.1109/JSEN.2011.2146771

    CrossRef Google Scholar

    [51] Du F, Lu Y Q, Wu S T. Electrically tunable liquid-crystal photonic crystal fiber[J]. Applied Physics Letters, 2004, 85(12): 2181-2183. doi: 10.1063/1.1796533

    CrossRef Google Scholar

    [52] Yan D, Popp J, Pletz M W, et al. Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers[J]. ACS Photonics, 2017, 4(1): 138-145. doi: 10.1021/acsphotonics.6b00688

    CrossRef Google Scholar

    [53] Xuan H F, Jin W, Ju W, et al. Low-contrast photonic bandgap fibers and their potential applications in liquid-base sensors[J]. Proceedings of SPIE, 2007, 6619: 661936.

    Google Scholar

    [54] de Matos C J S, Cordeiro C M B, dos Santos E M, et al. Liquid-core, liquid-cladding photonic crystal fibers[J]. Optics Express, 2007, 15(18): 11207-11212. doi: 10.1364/OE.15.011207

    CrossRef Google Scholar

    [55] Wang Y P, Tan X L, Jin W, et al. Improved bending property of half-filled photonic crystal fiber[J]. Optics Express, 2010, 18(12): 12197-12202. doi: 10.1364/OE.18.012197

    CrossRef Google Scholar

    [56] Pang M, Xuan H F, Ju J, et al. Influence of strain and pressure to the effective refractive index of the fundamental mode of hollow-core photonic bandgap fibers[J]. Optics Express, 2010, 18(13): 14041-14055. doi: 10.1364/OE.18.014041

    CrossRef Google Scholar

    [57] Pang M, Jin W. Detection of acoustic pressure with hollow-core photonic bandgap fiber[J]. Optics Express, 2009, 17(13): 11088-11097. doi: 10.1364/OE.17.011088

    CrossRef Google Scholar

    [58] Yang F, Jin W, Ho H L, et al. Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers[J]. Optics Express, 2013, 21(13): 15514-15521. doi: 10.1364/OE.21.015514

    CrossRef Google Scholar

    [59] Wang Y P, Jin W, Ju J, et al. Long period gratings in air-core photonic bandgap fibers[J]. Optics Express, 2008, 16(4): 2784-2790. doi: 10.1364/OE.16.002784

    CrossRef Google Scholar

    [60] Iadicicco A, Ranjan R, Campopiano S. Fabrication and characterization of long-period gratings in hollow core fibers by electric arc discharge[J]. IEEE Sensors Journal, 2015, 15(5): 3014-3020. doi: 10.1109/JSEN.2014.2383175

    CrossRef Google Scholar

    [61] Xuan H F, Jin W, Ju J, et al. Hollow-core photonic bandgap fiber polarizer[J]. Optics Letters, 2008, 33(8): 845-847. doi: 10.1364/OL.33.000845

    CrossRef Google Scholar

    [62] Xuan H F, Jin W, Zhang M, et al. In-fiber polarimeters based on hollow-core photonic bandgap fibers[J]. Optics Express, 2009, 17(15): 13246-13254. doi: 10.1364/OE.17.013246

    CrossRef Google Scholar

    [63] Bykov D S, Schmidt O A, Euser T G, et al. Flying particle sensors in hollow-core photonic crystal fibre[J]. Nature Photonics, 2015, 9: 461-465. doi: 10.1038/nphoton.2015.94

    CrossRef Google Scholar

    [64] Digonnet M, Blin S, Kim H K, et al. Sensitivity and stability of an air-core fiber-optic gyroscope[J]. Measurement Science & Technology, 2007, 18(10): 3089-3097.

    Google Scholar

    [65] Ying D, Demokan M S, Zhang X, et al. Analysis of Kerr effect in resonator fiber optic gyros with triangular wave phase modulation[J]. Applied Optics, 2010, 49(3): 529-535. doi: 10.1364/AO.49.000529

    CrossRef Google Scholar

  • Overview: In this paper, the unique properties and some recent sensing applications of hollow-core photonic bandgap fibers (HC-PBFs) are reviewed. Different to conventional all-solid fibers based on the principle of total internal reflection, in HC-PBF, most of light propagates in a hollow core region inside the fiber (typically > 95%). Hence, the core region of HC-PBF can be a contamination-free light-matter interaction channel with low loss, high energy density and long interaction distance. The air-propagation of light in HC-PBF would also reduces the impacts of fiber material properties (such as infrared absorption, thermos-optical effect) on the propagating light, hence offers an efficient platform for the sensing applications such as trace gas/liquid detection, optical fiber gyro sensing. Many high-sensitive single point and distributed/quasi-distributed gas sensing techniques based on HC-PBFs have been developed in recent years. Based on a photothermal interferometric detection method, the near-infrared HC-PBF acetylene sensing system can reach a detection limit of few ppb (parts per billion) level in noise equivalent concentration, and a dynamic range of about six orders of magnitude. The response time of long HC-PBF gas sensing systems can be improved by drilling side-holes along the fiber by using femtosecond laser. The average loss of the holes has been optimized to about 10-2 dB per hole. Liquids with different properties can be filled in the core or cladding region for a functional modification or extension. For example, the bandgap of HC-PBF can be adjusted by filling the liquid with specific refractive-index into the fiber. The fine silica-structure in HC-PBF exhibits novel mechanical and thermal properties, which would be beneficial to the sensing applications such as sound wave and vibration detection. The HC-PBF's porous structure can also be locally modified by applying various post-processing techniques, such as local heat treatment, micro-machining and selective filling. This would enable building novel in-fiber devices, for example long period gratings, polarizer and polarization interferometer et al. At present, the development of HC-PBF sensing technology has greatly expanded the sensing ability and application range of optical fiber. It is an important direction for the development of all optical devices and optical integration technology.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(16)

Article Metrics

Article views(11012) PDF downloads(5230) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint