空芯光子带隙光纤及其传感技术

汪超, 黄贺勇, 孟冬辉, 等. 空芯光子带隙光纤及其传感技术[J]. 光电工程, 2018, 45(9): 180151. doi: 10.12086/oee.2018.180151
引用本文: 汪超, 黄贺勇, 孟冬辉, 等. 空芯光子带隙光纤及其传感技术[J]. 光电工程, 2018, 45(9): 180151. doi: 10.12086/oee.2018.180151
Wang Chao, Huang Heyong, Meng Donghui, et al. Hollow-core photonic bandgap fibers: properties and sensing technology[J]. Opto-Electronic Engineering, 2018, 45(9): 180151. doi: 10.12086/oee.2018.180151
Citation: Wang Chao, Huang Heyong, Meng Donghui, et al. Hollow-core photonic bandgap fibers: properties and sensing technology[J]. Opto-Electronic Engineering, 2018, 45(9): 180151. doi: 10.12086/oee.2018.180151

空芯光子带隙光纤及其传感技术

  • 基金项目:
    国家自然科学基金资助项目(61535004);CAST-BISEE创新基金资助项目(CAST-BISEE2017-015);中央高校基本科研业务费资助
详细信息
    作者简介:
    通讯作者: 靳伟(1964-),男,博士,教授,主要从事光纤及其传感技术的研究。E-mail: eewjin@polyu.edu.hk
  • 中图分类号: O436.3;TN253

Hollow-core photonic bandgap fibers: properties and sensing technology

  • Fund Project: Supported by National Natural Science Foundation of China (61535004), CAST-BISEE Innovation Foundation (CAST-BISEE2017-015), and Basic Research Foundations of Wuhan University
More Information
  • 本文综述了空芯光子带隙光纤的独特性质,并介绍了近年来这类光纤在传感领域应用的新进展。光波在空气纤芯中低损耗传输是空芯光子带隙光纤的重要特性,它带来了长距离、大能量密度的光与物质相互作用通道,降低了光纤材料属性对传输光的影响(如中红外吸收、热光效应),为诸如痕量气体/液体探测、高精度光纤陀螺仪等传感应用提供了高效的新平台。空芯光子带隙光纤内部精细的微结构具有新颖的机械性能和热性能,有利于诸如声波、振动探测等传感应用;还可结合光纤后期热处理、选择性填充等技术,对多孔包层进行结构修改或材料填充,获得进一步的性能和功能扩展。这些灵活性已用于开发具有新特性的光纤器件,例如光栅、起偏器和偏振干涉仪。目前,空芯光子带隙光纤传感技术的发展已大大扩展了光纤的环境感知能力和应用范围,是全光器件和光集成技术发展的重要方向。

  • Overview: In this paper, the unique properties and some recent sensing applications of hollow-core photonic bandgap fibers (HC-PBFs) are reviewed. Different to conventional all-solid fibers based on the principle of total internal reflection, in HC-PBF, most of light propagates in a hollow core region inside the fiber (typically > 95%). Hence, the core region of HC-PBF can be a contamination-free light-matter interaction channel with low loss, high energy density and long interaction distance. The air-propagation of light in HC-PBF would also reduces the impacts of fiber material properties (such as infrared absorption, thermos-optical effect) on the propagating light, hence offers an efficient platform for the sensing applications such as trace gas/liquid detection, optical fiber gyro sensing. Many high-sensitive single point and distributed/quasi-distributed gas sensing techniques based on HC-PBFs have been developed in recent years. Based on a photothermal interferometric detection method, the near-infrared HC-PBF acetylene sensing system can reach a detection limit of few ppb (parts per billion) level in noise equivalent concentration, and a dynamic range of about six orders of magnitude. The response time of long HC-PBF gas sensing systems can be improved by drilling side-holes along the fiber by using femtosecond laser. The average loss of the holes has been optimized to about 10-2 dB per hole. Liquids with different properties can be filled in the core or cladding region for a functional modification or extension. For example, the bandgap of HC-PBF can be adjusted by filling the liquid with specific refractive-index into the fiber. The fine silica-structure in HC-PBF exhibits novel mechanical and thermal properties, which would be beneficial to the sensing applications such as sound wave and vibration detection. The HC-PBF's porous structure can also be locally modified by applying various post-processing techniques, such as local heat treatment, micro-machining and selective filling. This would enable building novel in-fiber devices, for example long period gratings, polarizer and polarization interferometer et al. At present, the development of HC-PBF sensing technology has greatly expanded the sensing ability and application range of optical fiber. It is an important direction for the development of all optical devices and optical integration technology.

  • 加载中
  • 图 1  基于TIR原理的光纤折射率分布及截面结构示意图。(a)阶跃折射率光纤;(b)渐变折射率光纤;(c)光子晶体光纤;(d)悬挂芯光纤

    Figure 1.  The cross-sectional schematics and refractive-index distributions of the optical fibers based on TIR principle. (a) Step-index fiber; (b) Gradient index fiber; (c) Photonic crystal fiber; (d) Suspended-core fiber

    图 2  基于(a) (一维)布拉格,(b)光子带隙和(c)反谐振结构的空芯光纤截面结构示意图

    Figure 2.  The cross-sectional schematics of hollow-core fibers with (a) 1-dimentional Bragg, (b) photonic bandgap and (c) anti-resonant structure

    图 3  (a) 三角形微孔分布的光子带隙结构及其微孔单元示意图;(b)商业空芯光子带隙光纤HC-1550-04的传输损耗和色散曲线[6]

    Figure 3.  (a) Photonic bandgap structure with triangular hole-distribution; (b) The transmission spectrum and dispersion curve of a commercial available HC-PBF (model HC-1550-04 from NKT photonics)[6]

    图 4  (a)、(b)和(c)分别为3、7和19单元HC-PBF中空气传输模式的色散曲线计算结果。黑色细线为带隙边缘,彩色粗线为HC-PBF中支持的空气模式,右上角插图为各种HC-PBF的空芯及其附近结构图[8]

    Figure 4.  (a), (b) and (c) are the calculated dispersion curves of the hollow-core modes in 3-, 7- and 19-cell HC-PBFs respectively[8]

    图 5  实测7单元HC-PBF在不同光纤长度和入射偏移时的输出模场形态。(a)长L=5 m,相对偏移Δξ=0;(b)长L=35 m,相对偏移Δξ=0;(c)长L=5 m,相对偏移Δξ≈0.5。相对偏移Δξ定义为绝对偏移量除以空芯尺寸[8]

    Figure 5.  The measured mode distribution of 7-cell HC-PBFs with different fiber length and incident offsets. (a) Fiber length L=5 m, relative offset Δξ=0; (b) Fiber length L=35 m, relative offset Δξ=0; (c) Fiber length L=5 m, relative offset Δξ≈0.5[8]

    图 6  (a) 4单元高双折射空芯光子带隙光纤[19];(b)改进7单元高双折射空芯光子带隙光纤[20];(c)保偏单模的大孔径空芯光子带隙光纤(比例尺长度10 μm)[10]

    Figure 6.  (a) 4-cell HC-PBF with high birefringence[19]; (b) Modified 7-cell HC-PBF with high birefringence[20]; (c) Single-mode and highly birefringent HC-PBF with large aperture[10]

    图 7  (a) 对较长空芯光子带隙光纤的分段组装方式[30];(b)从空芯光子带隙光纤表面直达纤芯的微孔,插图:飞秒激光制备微孔截面SEM照片[36]

    Figure 7.  (a) Piecewise assembly method for long HC-PBF[30]; (b) Micro-channels that go straight to the core from the surface of HC-PBF[36]

    图 8  基于空芯光子带隙光纤的光纤光热干涉气体探测系统。OC:环行器;FC:耦合器;PD:光探测器;HPF/LPF:高/低通滤波器;DAQ:数据采集卡;PZT:压电陶瓷驱动环[26]

    Figure 8.  Fiber optic thermal interference gas detection system based on HC-PBF. OC: optical circulator. FC: fiber coupler. PD: power detector. HPF/LPF: high/low pass filter. DAQ: data acquisition device. PZT: piezoelectric element[26]

    图 9  基于HC-PBF的光纤光学腔气室[42]

    Figure 9.  Optical fiber optic cavity gas chamber based on HC-PBF[42]

    图 10  基于OTDR和光谱吸收的分布式气体检测系统的示意图。G:放大器,ADC:模数转化器[45]

    Figure 10.  Schematic diagram of distributed gas detection system based on OTDR and spectral absorption[45]

    图 11  一段75 m长HC-PBF对10%浓度乙炔气体的分布式测量结果。乙炔气体施加在HC-PBF约44 m处[45]

    Figure 11.  Distributed measurement results of 10% acetylene gas with a 75-m-length HC-PBF. Acetylene gas was applied at the position of 44 m [45]

    图 12  基于HC-PBF的(a)分布式和(b)准分布式气体探测方案[46]

    Figure 12.  (a) Distributed and (b) quasi-distributed gas sensing based on HC-PBFs[46]

    图 13  计算得到的一种HC-PBF中微孔全部填充不同折射率液体时的传输谱漂移[53]

    Figure 13.  The calculated transmission spectrum drift of a HC-PBF filled with different refractive index liquids[53]

    图 14  对具有不同空气填充率的HC-PBF,归一化声波响应率与石英外包层厚度(c~b)关系的仿真结果。插图: HC-PBF截面结构图[57]

    Figure 14.  Simulation results on the relationship between normalized acoustic response rate and the thickness of quartz outer layer (c~b) for HC-PBF with different air-filling rates[57]

    图 15  (a) HC-PBF上用二氧化碳激光制备的周期430 μm的LPG局部侧视图;(b) HC-PBF LPG在节点(凹槽)处的截面图;(c)一个HC-PBF LPG样品透射谱的增长图[59]

    Figure 15.  (a) Side-view image of a 430 μm-pitch HC-PBF LPG made by CO2 laser; (b) The cross-sectional image of a HC-PBF LPG at the grooves; (c) The growth of the transmission spectrum of a HC-PBF LPG sample during fabrication[59]

    图 16  (a) 全光纤偏振计结构示意图;(b) HC-PBF上光纤起偏器样品侧视照片,及对应HC-PBF上(c)未加工和(d)加工位置处的截面照片;(e) 531 mm长偏振计的透射光谱;(f) 147 mm长偏振计对扭曲率的响应[62]

    Figure 16.  (a) Schematic structure of an all fiber polarimeter; (b) The side-view photo of a optical fiber polarizer in a HC-PBF polarimeter, and the cross-section photos corresponding to (c) the unprocessed and (d) the processed positions; (e) The transmission spectra of a 531-mm-length polarimeter; (f) The response of a 147 mm long polarimeter to the twist rate[62]

  • [1]

    Russell P. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358-362. doi: 10.1126/science.1079280

    [2]

    Poletti F, Wheeler N V, Petrovich M N, et al. Towards high-capacity fibre-optic communications at the speed of light in vacuum[J]. Nature Photonics, 2013, 7(4): 279-284. doi: 10.1038/nphoton.2013.45

    [3]

    Cregan R F, Mangan B J, Knight J C, et al. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537-1539. doi: 10.1126/science.285.5433.1537

    [4]

    Poletti F, Petrovich M N, Richardson D J. Hollow-core photonic bandgap fibers: technology and applications[J]. Nanophotonics, 2013, 2(5-6): 315-340. http://d.old.wanfangdata.com.cn/Periodical/gxydljqyyjs200606001

    [5]

    Poletti F. Hollow core fiber with an octave spanning bandgap[J]. Optics Letters, 2010, 35(17): 2837-2839. doi: 10.1364/OL.35.002837

    [6]

    Hollow-core photonic bandgap fiber (model HC-1550) datasheet from website of NKT Photonics Corporation[OL]. https://www.nktphotonics.com/lasers-fibers/product/hollow-core-photonic-crystal-fibers/.

    [7]

    Roberts P J, Couny F, Sabert H, et al. Ultimate low loss of hollow-core photonic crystal fibres[J]. Optics Express, 2005, 13(1): 236-244. doi: 10.1364/OPEX.13.000236

    [8]

    Petrovich M N, Poletti F, Van Brakel A, et al. Robustly single mode hollow core photonic bandgap fiber[J]. Optics Express, 2008, 16(6): 4337-4346. doi: 10.1364/OE.16.004337

    [9]

    Digonnet M J F, Kim H K, Kino G S, et al. Understanding air-core photonic-bandgap fibers: analogy to conventional fibers[J]. Journal of Lightwave Technology, 2006, 23(12): 4169-4177. http://ieeexplore.ieee.org/document/1566743

    [10]

    Fini J M, Nicholson J W, Mangan B, et al. Polarization maintaining single-mode low-loss hollow-core fibres[J]. Nature Communications, 2014, 5: 5085. doi: 10.1038/ncomms6085

    [11]

    Kim H K, Shin J, Fan S H, et al. Designing air-core photonic-bandgap fibers free of surface modes[J]. IEEE Journal of Quantum Electronics, 2004, 40(5): 551-556. doi: 10.1109/JQE.2004.826429

    [12]

    West J A, Smith C M, Borrelli N F, et al. Surface modes in air-core photonic band-gap fibers[J]. Optics Express, 2004, 12(8): 1485-1496. doi: 10.1364/OPEX.12.001485

    [13]

    Yang F, Jin W, Cao Y C, et al. Towards high sensitivity gas detection with hollow-core photonic bandgap fibers[J]. Optics Express, 2014, 22(20): 24894-24907. doi: 10.1364/OE.22.024894

    [14]

    Fini J M, Nicholson J W, Windeler R S, et al. Low-loss hollow-core fibers with improved single-modedness[J]. Optics Express, 2013, 21(5): 6233-6242. doi: 10.1364/OE.21.006233

    [15]

    Wegmuller M, Legré M, Gisin N, et al. Experimental investigation of the polarization properties of a hollow core photonic bandgap fiber for 1550 nm[J]. Optics Express, 2005, 13(5): 1457-1467. doi: 10.1364/OPEX.13.001457

    [16]

    Poletti F, Broderick N G R, Richardson D J, et al. The effect of core asymmetries on the polarization properties of hollow core photonic bandgap fibers[J]. Optics Express, 2005, 13(22): 9115-9124. doi: 10.1364/OPEX.13.009115

    [17]

    Bouwmans G, Luan F, Knight J C, et al. Properties of a hollow-core photonic bandgap fiber at 850 nm wavelength[J]. Optics Express, 2003, 11(14): 1613-1620. doi: 10.1364/OE.11.001613

    [18]

    Wen H, Terrel M A, Kim H K, Digonnet M J F, Fan S, Measurements of the Birefringence and Verdet Constant in an Air-Core Fiber[J]. Journal of Lightwave Technology, 2009, 27(15): 3194-3101. doi: 10.1109/JLT.2008.2009546

    [19]

    Alam M S, Saitoh K, Koshiba M. High group birefringence in air-core photonic bandgap fibers[J]. Optics Letters, 2005, 30(8): 824-826. doi: 10.1364/OL.30.000824

    [20]

    Roberts P J, Williams D P, Sabert H, et al. Design of low-loss and highly birefringent hollow-core photonic crystal fiber[J]. Optics Express, 2006, 14(16): 7329-7341. doi: 10.1364/OE.14.007329

    [21]

    Hansen T P, Broeng J, Jakobsen C, et al. Air-guiding photonic bandgap fibers: spectral properties, macrobending loss, and practical handling[J]. Journal of Lightwave Technology, 2004, 22(1): 11-15. doi: 10.1109/JLT.2003.822833

    [22]

    Wheeler N V, Heidt A M, Baddela N K, et al. Low-loss and low-bend-sensitivity mid-infrared guidance in a hollow-core-photonic-bandgap fiber[J]. Optics Letters, 2014, 39(2): 295-298. doi: 10.1364/OL.39.000295

    [23]

    Slavík R, Marra G, Fokoua E N, et al. Ultralow thermal sensitivity of phase and propagation delay in hollow core optical fibres[J]. Scientific Reports, 2015, 5: 15447. doi: 10.1038/srep15447

    [24]

    Dangui V, Kim H K, Digonnet M J F, et al. Phase sensitivity to temperature of the fundamental mode in air-guiding photonic-bandgap fibers[J]. Optics Express, 2005, 13(18): 6669-6684. doi: 10.1364/OPEX.13.006669

    [25]

    Jones D C, Bennett C R, Smith M A, et al. High-power beam transport through a hollow-core photonic bandgap fiber[J]. Optics Letters, 2014, 39(11): 3122-3125. doi: 10.1364/OL.39.003122

    [26]

    Jin W, Cao Y C, Yang F, et al. Ultra-sensitive all-fibre photothermal spectroscopy with large dynamic range[J]. Nature Communications, 2015, 6: 6767. doi: 10.1038/ncomms7767

    [27]

    Hoo Y L, Jin W, Ho H L, et al. Gas diffusion measurement using hollow-core photonic bandgap fiber[J]. Sensors and Actuators B: Chemical, 2005, 105(2): 183-186. doi: 10.1016/j.snb.2004.05.059

    [28]

    Ritari T, Tuominen J, Ludvigsen H, et al. Gas sensing using air-guiding photonic bandgap fibers[J]. Optics Express, 2004, 12(17): 4080-4087. doi: 10.1364/OPEX.12.004080

    [29]

    Magalhaes F, Carvalho J P, Ferreira L A, et al. Methane detection system based on wavelength modulation spectroscopy and hollow-core fibres[C]//Proceedings of 2008 IEEE SENSORS, 2008: 1277-1280.

    [30]

    Parry J P, Griffiths B C, Gayraud N, et al. Towards practical gas sensing with micro-structured fibres[J]. Measurement Science and Technology, 2009, 20(7): 075301. doi: 10.1088/0957-0233/20/7/075301

    [31]

    Wynne R M, Barabadi B, Creedon K J, et al. Sub-minute response time of a hollow-core photonic bandgap fiber gas sensor[J]. Journal of Lightwave Technology, 2009, 27(11): 1590-1596. doi: 10.1109/JLT.2009.2019258

    [32]

    Nwaboh J A, Hald J, Lyngsø J K, et al. Measurements of CO2 in a multipass cell and in a hollow-core photonic bandgap fiber at 2 μm[J]. Applied Physics B, 2013, 110(2): 187-194. doi: 10.1007/s00340-012-5047-0

    [33]

    Benabid F, Couny F, Knight J C, et al. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres[J]. Nature, 2005, 434(7032): 488-491. doi: 10.1038/nature03349

    [34]

    Xiao L M, Demokan M S, Jin W, et al. Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect[J]. Journal of Lightwave Technology, 2007, 25(11): 3563-3574. doi: 10.1109/JLT.2007.907787

    [35]

    Benabid F. Photonic microcells[C]//Proceedings of Advanced Photonics Congress, 2012.

    [36]

    Hoo Y L, Liu S J, Ho H L, et al. Fast response microstructured optical fiber methane sensor with multiple side-openings[J]. IEEE Photonics Technology Letters, 2010, 22(5): 296-298. doi: 10.1109/LPT.2009.2039016

    [37]

    Lehmann H, Brueckner S, Kobelke J, et al. Toward photonic crystal fiber based distributed chemosensors[J]. Proceedings of the SPIE, 2005, 5855: 419-422. doi: 10.1117/12.623667

    [38]

    Li X F, Liang J X, Oigawa H, et al. Doubled optical path length for photonic bandgap fiber gas cell using micromirror[J]. Japanese Journal of Applied Physics, 2011, 50(6): 06GM01. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=JJ0235605689

    [39]

    van Brakel A, Grivas C, Petrovich M N, et al. Micro-channels machined in microstructured optical fibers by femtosecond laser[J]. Optics Express, 2007, 15(14): 8731-8736. doi: 10.1364/OE.15.008731

    [40]

    Yang F, Jin W, Lin Y C, et al. Hollow-core microstructured optical fiber gas sensors[J]. Journal of Lightwave Technology, 2017, 35(16): 3413-3424. doi: 10.1109/JLT.2016.2628092

    [41]

    Lin Y C, Wei J, Yang F, et al. Pulsed photothermal interferometry for spectroscopic gas detection with hollow-core optical fibre[J]. Scientific Reports, 2016, 6: 39410. doi: 10.1038/srep39410

    [42]

    Tan Y Z, Jin W, Yang F, et al. Hollow-core fiber-based high finesse resonating cavity for high sensitivity gas detection[J]. Journal of Lightwave Technology, 2017, 35(14): 2887-2893. doi: 10.1109/JLT.2017.2705229

    [43]

    Yang F, Jin W. All-fiber hydrogen sensor based on stimulated Raman gain spectroscopy with a 1550 nm hollow-core fiber[C]//Proceedings of 25th Optical Fiber Sensors Conference (OFS), 2017: 4.

    [44]

    Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 2012, 12(7): 8601-8639. doi: 10.3390/s120708601

    [45]

    Jin W, Ho H L, Cao Y C, et al. Gas detection with micro- and nano-engineered optical fibers[J]. Optical Fiber Technology, 2013, 19(6): 741-759. doi: 10.1016/j.yofte.2013.08.004

    [46]

    Lin Y C, Liu F, He X G, et al. Distributed gas sensing with optical fibre photothermal interferometry[J]. Optics Express, 2017, 25(25): 31568-31585. doi: 10.1364/OE.25.031568

    [47]

    Xiao L M, Jin W, Demokan M S, et al. Fabrication of selective injection microstructured optical fibers with a conventional fusion splicer[J]. Optics Express, 2005, 13(22): 9014-9022. doi: 10.1364/OPEX.13.009014

    [48]

    Cordeiro C M B, dos Santos E M, Cruz C H B, et al. Lateral access to the holes of photonic crystal fibers-selective filling and sensing applications[J]. Optics Express, 2006, 14(18): 8403-8412. doi: 10.1364/OE.14.008403

    [49]

    Huang Y Y, Xu Y, Yariv A. Fabrication of functional microstructured optical fibers through a selective-filling technique[J]. Applied Physics Letters, 2004, 85(22): 5182-5184. doi: 10.1063/1.1828593

    [50]

    Bozolan A, Gerosa R M, de Matos C J S, et al. Temperature sensing using colloidal-core photonic crystal fiber[J]. IEEE Sensors Journal, 2012, 12(1): 195-200. doi: 10.1109/JSEN.2011.2146771

    [51]

    Du F, Lu Y Q, Wu S T. Electrically tunable liquid-crystal photonic crystal fiber[J]. Applied Physics Letters, 2004, 85(12): 2181-2183. doi: 10.1063/1.1796533

    [52]

    Yan D, Popp J, Pletz M W, et al. Highly sensitive broadband Raman sensing of antibiotics in step-index hollow-core photonic crystal fibers[J]. ACS Photonics, 2017, 4(1): 138-145. doi: 10.1021/acsphotonics.6b00688

    [53]

    Xuan H F, Jin W, Ju W, et al. Low-contrast photonic bandgap fibers and their potential applications in liquid-base sensors[J]. Proceedings of SPIE, 2007, 6619: 661936. https://www.researchgate.net/publication/253474494_Low-contrast_photonic_bandgap_fibers_and_their_potential_applications_in_liquid-base_sensors

    [54]

    de Matos C J S, Cordeiro C M B, dos Santos E M, et al. Liquid-core, liquid-cladding photonic crystal fibers[J]. Optics Express, 2007, 15(18): 11207-11212. doi: 10.1364/OE.15.011207

    [55]

    Wang Y P, Tan X L, Jin W, et al. Improved bending property of half-filled photonic crystal fiber[J]. Optics Express, 2010, 18(12): 12197-12202. doi: 10.1364/OE.18.012197

    [56]

    Pang M, Xuan H F, Ju J, et al. Influence of strain and pressure to the effective refractive index of the fundamental mode of hollow-core photonic bandgap fibers[J]. Optics Express, 2010, 18(13): 14041-14055. doi: 10.1364/OE.18.014041

    [57]

    Pang M, Jin W. Detection of acoustic pressure with hollow-core photonic bandgap fiber[J]. Optics Express, 2009, 17(13): 11088-11097. doi: 10.1364/OE.17.011088

    [58]

    Yang F, Jin W, Ho H L, et al. Enhancement of acoustic sensitivity of hollow-core photonic bandgap fibers[J]. Optics Express, 2013, 21(13): 15514-15521. doi: 10.1364/OE.21.015514

    [59]

    Wang Y P, Jin W, Ju J, et al. Long period gratings in air-core photonic bandgap fibers[J]. Optics Express, 2008, 16(4): 2784-2790. doi: 10.1364/OE.16.002784

    [60]

    Iadicicco A, Ranjan R, Campopiano S. Fabrication and characterization of long-period gratings in hollow core fibers by electric arc discharge[J]. IEEE Sensors Journal, 2015, 15(5): 3014-3020. doi: 10.1109/JSEN.2014.2383175

    [61]

    Xuan H F, Jin W, Ju J, et al. Hollow-core photonic bandgap fiber polarizer[J]. Optics Letters, 2008, 33(8): 845-847. doi: 10.1364/OL.33.000845

    [62]

    Xuan H F, Jin W, Zhang M, et al. In-fiber polarimeters based on hollow-core photonic bandgap fibers[J]. Optics Express, 2009, 17(15): 13246-13254. doi: 10.1364/OE.17.013246

    [63]

    Bykov D S, Schmidt O A, Euser T G, et al. Flying particle sensors in hollow-core photonic crystal fibre[J]. Nature Photonics, 2015, 9: 461-465. doi: 10.1038/nphoton.2015.94

    [64]

    Digonnet M, Blin S, Kim H K, et al. Sensitivity and stability of an air-core fiber-optic gyroscope[J]. Measurement Science & Technology, 2007, 18(10): 3089-3097. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001781255

    [65]

    Ying D, Demokan M S, Zhang X, et al. Analysis of Kerr effect in resonator fiber optic gyros with triangular wave phase modulation[J]. Applied Optics, 2010, 49(3): 529-535. doi: 10.1364/AO.49.000529

  • 加载中

(16)

计量
  • 文章访问数:  11576
  • PDF下载数:  5400
  • 施引文献:  0
出版历程
收稿日期:  2018-02-09
修回日期:  2018-05-10
刊出日期:  2018-09-01

目录

/

返回文章
返回