As the core technology of distributed fiber-optic sensing, optical reflectometry may realize the non-destructive measurement at a remote position. It can be used to retrieve the distributed information such as reflectance, refractive index, polarization state along the optical fiber, and to diagnose the irregular "event" on fiber-optic links. For some high-end fields, such as the fault diagnosis on the fiber-to-the-home (FTTH) access network, the deformation monitoring on large generating units and large transformers, and the security monitoring on structures of airplane wings, the requirements on spatial resolution and measurement range of the sensing technologies are very high. In this paper, we summarized the research status on state-of-art optical reflectometry technologies, and reviewed the advances of key technologies on optical reflectometry with ultra-high spatial resolution and long measurement range. We proposed three different methods to improve the performance, and tried to promote their applications on distributed fiber-optic sensing systems.
Home > Journal Home > Opto-Electronic Engineering
Opto-Electronic Engineering
ISSN: 1003-501X
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
Advances of key technologies on optical reflectometry with ultra-high spatial resolution
Author Affiliations

First published at:Sep 01, 2018
Abstract
Overview
References
1 Barnoski M K, Jensen S M. Fiber waveguides: a novel technique for investigating attenuation characteristics[J]. Applied Optics, 1976, 15(9): 2112-2115. DOI:10.1364/AO.15.002112
2 Liokumovich L B, Ushakov N A, Kotov O I, et al. Fundamentals of optical fiber sensing schemes based on coherent optical time domain reflectometry: signal model under static fiber conditions[J]. Journal of Lightwave Technology, 2015, 33(17): 3660-3671. DOI:10.1109/JLT.2015.2449085
3 Martins H F, Martín-López S, Corredera P, et al. Phase-sensitive optical time domain reflectometer assisted by first-order Raman amplification for distributed vibration sensing over > 100 km[J]. Journal of Lightwave Technology, 2014, 32(8): 1510-1518. DOI:10.1109/JLT.2014.2308354
4 Martins H F, Martin-Lopez S, Corredera P, et al. Coherent noise reduction in high visibility phase-sensitive optical time domain reflectometer for distributed sensing of ultrasonic waves[J]. Journal of Lightwave Technology, 2013, 31(23): 3631-3637. DOI:10.1109/JLT.2013.2286223
5 Eickhoff W, Ulrich R. Optical frequency domain reflectometry in single‐mode fiber[J]. Applied Physics Letters, 1981, 39(9): 693-695. DOI:10.1063/1.92872
6 Takada K, Yokohama I, Chida K, et al. New measurement system for fault location in optical waveguide devices based on an interferometric technique[J]. Applied Optics, 1987, 26(9): 1603-1606. DOI:10.1364/AO.26.001603
7 Soller B J, Gifford D K, Wolfe M S, et al. High resolution optical frequency domain reflectometry for characterization of components and assemblies[J]. Optics Express, 2005, 13(2): 666-674. DOI:10.1364/OPEX.13.000666
8 Bethea C G, Levine B F, Cova S, et al. High-resolution and high-sensitivity optical-time-domain reflectometer[J]. Optics Letters, 1988, 13(3): 233-235. DOI:10.1364/OL.13.000233
9 Legré M, Thew R, Zbinden H, et al. High resolution optical time domain reflectometer based on 1.55 μm up-conversion photon-counting module[J]. Optics Express, 2007, 15(13): 8237-8242. DOI:10.1364/OE.15.008237
10 Shentu G L, Sun Q C, Jiang X, et al. 217 km long distance photon-counting optical time-domain reflectometry based on ultra-low noise up-conversion single photon detector[J]. Optics Express, 2013, 21(21): 24674-24679. DOI:10.1364/OE.21.024674
11 Zhao Q Y, Hu J H, Zhang X P, et al. Photon-counting optical time-domain reflectometry with superconducting nanowire single-photon detectors[C]//Proceedings of the IEEE 14th International Superconductive Electronics Conference (ISEC), 2013: 1-3.
12 Wang Y C, Wang B J, Wang A B. Chaotic correlation optical time domain reflectometer utilizing laser diode[J]. IEEE Photonics Technology Letters, 2008, 20(19): 1636-1638. DOI:10.1109/LPT.2008.2002745
13 Wang Z N, Fan M Q, Zhang L, et al. Long-range and high-precision correlation optical time-domain reflectometry utilizing an all-fiber chaotic source[J]. Optics Express, 2015, 23(12): 15514-15520. DOI:10.1364/OE.23.015514
14 Zhang L M, Pan B W, Chen G C, et al. Long-range and high-resolution correlation optical time-domain reflectometry using a monolithic integrated broadband chaotic laser[J]. Applied Optics, 2017, 56(4): 1253-1256. DOI:10.1364/AO.56.001253
15 Wang S, Fan X Y, Liu Q W, et al. Distributed fiber-optic vibration sensing based on phase extraction from time-gated digital OFDR[J]. Optics Express, 2015, 23(26): 33301-33309. DOI:10.1364/OE.23.033301
17 Wang B, Fan X Y, Wang S, et al. Millimeter-resolution long-range OFDR using ultra-linearly 100 GHz-swept optical source realized by injection-locking technique and cascaded FWM process[J]. Optics Express, 2017, 25(4): 3514-3524. DOI:10.1364/OE.25.003514
19 Wang S, Fan X Y, Wang B, et al. Sub-THz-range linearly chirped signals characterized using linear optical sampling technique to enable sub-millimeter resolution for optical sensing applications[J]. Optics Express, 2017, 25(9): 10224-10233. DOI:10.1364/OE.25.010224
20 Koshikiya Y, Fan X Y, Ito F. Long range and cm-level spatial resolution measurement using coherent optical frequency domain reflectometry with SSB-SC modulator and narrow linewidth fiber laser[J]. Journal of Lightwave Technology, 2008, 26(18): 3287-3294. DOI:10.1109/JLT.2008.928916
21 Fan X Y, Koshikiya Y, Ito F. Phase-noise-compensated optical frequency-domain reflectometry[J]. IEEE Journal of Quantum Electronics, 2009, 45(6): 594-602. DOI:10.1109/JQE.2009.2013114
22 Dorrer C, Kilper D C, Stuart H R, et al. Linear optical sampling[J]. IEEE Photonics Technology Letters, 2003, 15(12): 1746-1748. DOI:10.1109/LPT.2003.819729
Keywords:
Funds:
National Key R & D Program of China (2017YFB0405500)
Export Citations as:
For
Get Citation:
Wang Shuai, Wang Bin, Liu Qingwen, et al. Advances of key technologies on optical reflectometry with ultra-high spatial resolution[J]. Opto-Electronic Engineering, 2018, 45(9): 170669.