Brillouin fiber sensing using stimulated Brillouin scattering in fibers to measure temperature and stress with the features of high-spatial resolution, long sensing range, small measurement error, etc. Therefore, Brillouin fiber sensing becomes the hotspot in recent two or three decades. Through research and analysis on the progress of long range distributed Brillouin sensing, main limitations and key techniques are generalized in this paper. Long range sensing schemes based on time division multiplexing, frequency division multiplexing, pulse coding, wide-bandwidth frequency modulation and image processing methods are emphatically introduced here. With long range Brillouin sensors applied in practice, increasing demand for fast measurement emerges, which we believe will be dominant in the research of long range Brillouin fiber sensing in the future.
Home > Journal Home > Opto-Electronic Engineering
Opto-Electronic Engineering
ISSN: 1003-501X
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
Advances of key technologies in long-range distributed Brillouin optical fiber sensing
Author Affiliations

First published at:Sep 01, 2018
Abstract
Overview
References
1 Sun Q, Feng H, Yan X Y, et al. Recognition of a phase-sensitivity OTDR sensing system based on morphologic feature extraction[J]. Sensors, 2015, 15(7): 15179-15197. DOI:10.3390/s150715179
2 Dong Y K, Chen X, Liu E H, et al. Quantitative measurement of dynamic nanostrain based on a phase-sensitive optical time domain reflectometer[J]. Applied Optics, 2016, 55(28): 7810-7815. DOI:10.1364/AO.55.007810
3 Dong Y K, Xu P B, Fu C, et al. 1200℃ high-temperature distributed Brillouin optical fiber sensing based on photonics crystal fiber[J]. Proceedings of SPIE, 2015, 9634: 963485. DOI:10.1117/12.2205329
4 Kim Y H, Song K Y. Tailored pump compensation for Brillouin optical time-domain analysis with distributed Brillouin amplification[J]. Optics Express, 2017, 25(13): 14098-14105. DOI:10.1364/OE.25.014098
5 Bolognini G, Hartog A H. Raman-based fibre sensors: trends and applications[J]. Optical Fiber Technology, 2013, 19(6): 678-688. DOI:10.1016/j.yofte.2013.08.003
6 Dominguez-Lopez A, Soto M A, Martin-Lopez S, et al. Resolving 1 million sensing points in an optimized differential time-domain Brillouin sensor[J]. Optics Letters, 2017, 42(10): 1903-1906. DOI:10.1364/OL.42.001903
7 Horiguchi T, Kurashima T, Tateda M. Tensile strain dependence of Brillouin frequency shift in silica optical fibers[J]. IEEE Photonics Technology Letters, 1989, 1(5): 107-108. DOI:10.1109/68.34756
8 Kurashima T, Horiguchi T, Tateda M. Thermal effects on the Brillouin frequency shift in jacketed optical silica fibers[J]. Applied Optics, 1990, 29(15): 2219-2222. DOI:10.1364/AO.29.002219
9 Dong Y K, Chen L, Bao X Y. Extending the sensing range of Brillouin optical time-domain analysis combining frequency-division multiplexing and in-line EDFAs[J]. Journal of Lightwave Technology, 2012, 30(8): 1161-1167. DOI:10.1109/JLT.2011.2170813
10 Ba D X, Wang B Z, Zhou D W, et al. Dynamic distributed Brillouin optical fiber sensing based on multi-slope analysis[J]. Proceedings of SPIE, 2015, 9634: 96344T. DOI:10.1117/12.2194539
11 Soto M A, Bolognini G, Pasquale F D, et al. Simplex-coded BOTDA fiber sensor with 1 m spatial resolution over a 50 km range[J]. Optics Letters, 2010, 35(2): 259-261. DOI:10.1364/OL.35.000259
12 Soto M A, Bolognini G, Di Pasquale F. Long-range simplex-coded BOTDA sensor over 120km distance employing optical preamplification[J]. Optical Letters, 2011, 36(2): 232-234. DOI:10.1364/OL.36.000232
13 Soto M A, Taki M, Bolognini G, et al. Simplex-coded BOTDA sensor over 120-km SMF with 1-m spatial resolution assisted by optimized bidirectional Raman amplification[J]. IEEE Photonics Technology Letters, 2012, 24(20): 1823-1826. DOI:10.1109/LPT.2012.2212183
14 Dong Y K, Chen L, Bao X Y. Time-division multiplexing-based BOTDA over 100km sensing length[J]. Optics Letters, 2011, 36(2): 277-279. DOI:10.1364/OL.36.000277
15 Mompó J J, Urricelqui J, Loayssa A. Brillouin optical time-domain analysis sensor with pump pulse amplification[J]. Optics Express, 2016, 24(12): 12672-12681. DOI:10.1364/OE.24.012672
16 Soto M A, Ramírez J A, Thévenaz L. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration[J]. Nature Communications, 2016, 7: 10870. DOI:10.1038/ncomms10870
17 Soto M A, Ramírez J, Thevenaz L. 200 km fiber-loop conventional Brillouin distributed sensor with 2 m spatial resolution using image denoising[C]//Asia Pacific Optical Sensors Conference, 2016: Th3A. 4.
18 Dong Y K, Zhang H Y, Lu Z W, et al. Impacts of Kerr effect and fiber dispersion on long-range Brillouin optical time-domain analysis systems[J]. Proceedings of SPIE, 2012, 8421: 84219Z. DOI:10.1117/12.974984
19 Tai K, Hasegawa A, Tomita A. Observation of modulational instability in optical fibers[J]. Physical Review Letters, 1986, 56(2): 135. DOI:10.1103/PhysRevLett.56.135
20 Dominguez-Lopez A, Angulo-Vinuesa X, Lopez-Gil A, et al. Non-local effects in dual-probe-sideband Brillouin optical time domain analysis[J]. Optics Express, 2015, 23(8): 10341-10352. DOI:10.1364/OE.23.010341
21 Thévenaz L, Mafang S F, Lin Jie. Effect of pulse depletion in a Brillouin optical time-domain analysis system[J]. Optics Express, 2013, 21(12): 14017-14035. DOI:10.1364/OE.21.014017
22 Dong Y K, Chen L, Bao X Y. System optimization of a long-range Brillouin-loss-based distributed fiber sensor[J]. Applied Optics, 2010, 49(27): 5020-5025. DOI:10.1364/AO.49.005020
23 Jia X H, Chang H Q, Lin K, et al. Frequency-comb-based BOTDA sensors for high-spatial-resolution/long-distance sensing[J]. Optics Express, 2017, 25(6): 6997-7007. DOI:10.1364/OE.25.006997
Keywords:
Funds:
National Natural Science Fund of China (61575052) and National Key Scientific Instrument and Equipment Development Projects, China (2017YFF0108700)
Export Citations as:
For
Get Citation:
Wang Benzhang, Pang Chao, Zhou Dengwang, et al. Advances of key technologies in long-range distributed Brillouin optical fiber sensing[J]. Opto-Electronic Engineering, 2018, 45(9): 170484.