光纤偏振器件与组件的分布式串音测量研究进展

杨军, 苑勇贵, 喻张俊, 等. 光纤偏振器件与组件的分布式串音测量研究进展[J]. 光电工程, 2018, 45(9): 170625. doi: 10.12086/oee.2018.170625
引用本文: 杨军, 苑勇贵, 喻张俊, 等. 光纤偏振器件与组件的分布式串音测量研究进展[J]. 光电工程, 2018, 45(9): 170625. doi: 10.12086/oee.2018.170625
Yang Jun, Yuan Yonggui, Yu Zhangjun, et al. Recent progress of accurate measurement for distributed polarization crosstalk of fiber optic polarization component and device[J]. Opto-Electronic Engineering, 2018, 45(9): 170625. doi: 10.12086/oee.2018.170625
Citation: Yang Jun, Yuan Yonggui, Yu Zhangjun, et al. Recent progress of accurate measurement for distributed polarization crosstalk of fiber optic polarization component and device[J]. Opto-Electronic Engineering, 2018, 45(9): 170625. doi: 10.12086/oee.2018.170625

光纤偏振器件与组件的分布式串音测量研究进展

  • 基金项目:
    国家重大科学仪器专项(N2013YQ040815);国家自然科学基金资助项目(61422505, 61227013);教育部博士点基金资助项目(20122304110022);哈尔滨市科技创新人才研究基金资助项目(2015RAYXJ009)
详细信息
    通讯作者: 杨军(1976-),男,博士,教授,博士生导师,主要从事光纤器件测试与传感方面的研究。E-mail:yangjun@hrbeu.edu.cn
  • 中图分类号: TN253

Recent progress of accurate measurement for distributed polarization crosstalk of fiber optic polarization component and device

  • Fund Project: Supported by the National Key Scientific Instrument and Equipment Development Project (2013YQ040815), the National Natural Science Foundation of China (61422505, 61227013), the Specialized Research Fund for the Doctoral Program of Higher Education (20122304110022), and the Harbin technological innovation talent research fund (2015RAYXJ009)
More Information
  • 偏振串音是指光纤偏振器件与组件中两个正交偏振传输模式之间在微扰点发生的能量相互耦合的现象,而沿传输方向串音的连续分布既能够直接反映其光学偏振性能,如起偏、椭偏、消偏等特性,也能间接反映其制备工艺和外部环境状态,如连接与固定处的应力和应变、温度状态等。因此,偏振串音是光纤偏振器件与组件的固有性能和环境影响的综合体现,有望发展成为在线测试、诊断评价光纤偏振器件与组件性能的通用特征参量。基于白光干涉原理的光学相干域偏振测量(OCDP)技术是实现分布式偏振串音检测的最优方法,它利用扫描式白光干涉仪实现不同偏振模式间的干涉,对分布式串音发生的空间位置及幅值强度进行精确测量,具有超高灵敏度、超大动态范围、超长测量长度等优点。本文以光纤偏振器件与组件——保偏光纤环和多功能集成光学调制器作为分布式偏振串音精确测量与应用的范例,介绍了基于OCDP技术的分布式串音测试原理,回顾了测量误差的来源及相应的抑制方法,如由测试光路的参数非理想引入的静态误差以及由测试环境变化引入的动态误差,展示了不同环境温度下光纤偏振器件与组件的精确测试结果。最后,结合光纤偏振器件与组件复杂多变的工作环境,对分布式串音测量方法的发展进行了展望。

  • Overview: The polarization crosstalk, also termed polarization mode coupling, of a fiber optic polarization component and device refers to the optical power coupling that occurs at a disturbance point between the two orthogonal polarized modes propagating in it. The distributed polarization crosstalk along with the light propagation direction is directly responsible for the optical polarization properties, for example, the polarization, elliptical polarization, and depolarization properties. It also indirectly reflects the manufacturing technique and the state of the ambient environment, for example, the stress and strain at the joint and fixed position, as well as the temperature. Thus, it is the comprehensive embodiment of the intrinsic performance of the fiber optic polarization component or device and the influence of environment. It is expected to be a general characteristic parameter for online testing, diagnosis, and evaluation of the performance of the fiber optic polarization component and device.

    The optimal measurement method for distributed polarization crosstalk till now is the optical coherence domain polarimetry (OCDP). It is based on the white light interferometry and accurately measures the position and amplitude of the distributed polarization crosstalk using a scanning white light interferometer to realize interference between different polarized modes. It has the merits of ultra-high sensitivity, ultra-wide dynamic range, and ultra-long measurable length. Over the past decade, our research group developed suppression technique for interferometric beat noise to enhance the dynamic range beyond 100 dB, developed suppression technique for insertion loss fluctuation of optical delay line to reduce the measurement resolution below 0.2 dB, developed range extension technique of the optical delay line to enlarge the measurement length over 5 km, and so on.

    This review takes the polarization maintaining fiber coil and multifunctional integrated optical modulator as examples of distributed polarization crosstalk measurement and application. Firstly, the measurement principle of distributed polarization crosstalk based on the OCDP is introduced. Secondly, the measurement error sources and corresponding suppression methods are reviewed. Thirdly, the accurate measurement results of the fiber optic polarization component and device at different temperature are demonstrated. In the end, it outlooks the development of distributed polarization crosstalk measurement considering the complicated and changeable operation environment of the fiber optic polarization component and device, as well as the semi-closed and closed light path measurement.

  • 加载中
  • 图 1  保偏光纤环分布式偏振串音的测试原理[15]

    Figure 1.  Schematic diagram of measuring the distributed polarization crosstalk of a polarization maintaining fiber coil[15]

    图 2  Y波导分布式偏振串音测试原理

    Figure 2.  Schematic diagram of measuring the distributed polarization crosstalk of Y waveguide

    图 3  (a) 待测器件连接示意图;(b)尾纤之间的熔接角度与Y波导消光比测试误差的关系;(c)起偏器起偏角度与Y波导消光比测试误差的关系[28]

    Figure 3.  (a) Connection schematic diagram of DUT; (b) Relationship between the splicing angle and the measurement error of polarization extinction ratio of a Y waveguide; (c) Relationship between the oriented angle of the polarizer and the measurement error of polarization extinction ratio of a Y waveguide[28]

    图 4  (a) 不同长度保偏光纤的双折射色散对Y波导芯片消光比测试结果的影响[28];(b)双折射色散补偿算法流程图[22];(c)色散补偿后的Y波导芯片消光比测试结果[28]

    Figure 4.  (a) The influence of birefringence dispersion of polarization maintaining fibers with different length on the result of polarization extinction ratio of a Y waveguide; (b) Flow chart of compensation algorithm for birefringence dispersion; (c) The result of polarization extinction ratio of a Y waveguide with birefringence dispersion compensation

    图 5  (a) 保偏光纤环正反向同时测量装置;(b)光纤环正反向同时测量结果;(c)不同温度下依光程分布的保偏光纤环的串音;(d)正反向光程差的差异随温度的变化[26]

    Figure 5.  (a) Setup for simultaneously measuring both directions of the polarization maintaining fiber coil; (b) Results of simultaneously measuring both directions of the polarization maintaining fiber coil; (c) Temperature dependent distributed polarization crosstalk of the polarization maintaining fiber coil; (d) Scanning OPD differences between the forward and backward transmissions versus temperature[26]

    图 6  (a)~(b) Y波导双通道同时测量的两种光路结构;(c)~(d)相应的精确测量结果[24-25]

    Figure 6.  (a)~(b) Two different structures for simultaneously measuring both channels of Y waveguide; (c)~(d) The accurate measurement results[24-25]

    图 7  保偏光纤分布式偏振串音的温度特性

    Figure 7.  Temperature dependent distributed polarization crosstalk of the polarization maintaining fiber coil

    图 8  Y波导分布式偏振串音的温度特性[25]

    Figure 8.  Temperature dependent distributed polarization crosstalk of the Y waveguide[25]

  • [1]

    Ramaswamy V, French W G, Standley R D. Polarization characteristics of noncircular core single-mode fibers[J]. Applied Optics, 1978, 17(18): 3014–3017. doi: 10.1364/AO.17.003014

    [2]

    Stolen R H, Ramaswamy V, Kaiser P, et al. Linear polarization in birefringent single‐mode fibers[J]. Applied Physics Letters, 1978, 33(8): 699–701. doi: 10.1063/1.90534

    [3]

    Bergh R, Lefevre H, Shaw H. An overview of fiber-optic gyroscopes[J]. Journal of Lightwave Technology, 1984, 2(2): 91–107. doi: 10.1109/JLT.1984.1073580

    [4]

    Eickhoff W. In-line fibre-optic polariser[J]. Electronics Letters, 1980, 16(20): 762–764. doi: 10.1049/el:19800541

    [5]

    Arditty H J, Papuchon M, Puech C. Reciprocity properties of a branching waveguide[M]//Ezekiel S, Arditty H J. Fiber-Optic Rotation Sensors and Related Technologies. Berlin, Heidelberg: Springer, 1982: 102–110.

    [6]

    Nayar B K, Smith D R. Monomode-polarization-maintaining fiber directional couplers[J]. Optics Letters, 1983, 8(10): 543–545. doi: 10.1364/OL.8.000543

    [7]

    Okamoto K, Miyazawa H, Noda J, et al. Novel optical isolator consisting of a YIG spherical lens and PANDA-fibre polarisers[J]. Electronics Letters, 1985, 21(1): 36–38. doi: 10.1049/el:19850028

    [8]

    Li Z H, Meng Z, Chen X J, et al. Method for improving the resolution and accuracy against birefringence dispersion in distributed polarization cross-talk measurements[J]. Optics Letters, 2012, 37(14): 2775–2777. doi: 10.1364/OL.37.002775

    [9]

    Yang J, Yuan Y G, Zhou A, et al. Full evaluation of polarization characteristics of multifunctional integrated optic chip with high accuracy[J]. Journal of Lightwave Technology, 2014, 32(22): 4243–4252. doi: 10.1109/JLT.2014.2342753

    [10]

    Bing W, Yang J, Yuan Y G, et al. Performance tests of PM optical fiber coupler based on optical coherence domain polarimetry[J]. Proceedings of SPIE, 2012, 8421: 8421A2.

    [11]

    Chen S, Giles I P, Fahadiroushan M. Quasi-distributed pressure sensor using intensity-type optical coherence domain polarimetry[J]. Optics Letters, 1991, 16(5): 342–344. doi: 10.1364/OL.16.000342

    [12]

    Chen S, Giles I P. Optical coherence domain polarimetry: intensity and interferometric type for quasi-distributed optical fiber sensors[J]. Proceedings of SPIE, 1990, 1370: 217–225. doi: 10.1117/12.24871

    [13]

    Chen S, Giles I P. 'On-spot' interferometric optical coherence domain polarimetry for quasi-distribute temperature sensors[J]. Electronics Letters, 1990, 26(19): 1607–1608. doi: 10.1049/el:19901030

    [14]

    Li C, Yang J, Yu Z J, et al. Dynamic range beyond 100 dB for polarization mode coupling measurement based on white light interferometer[J]. Optics Express, 2016, 24(15): 16247–16257. doi: 10.1364/OE.24.016247

    [15]

    Li C, Yang J, Yuan Y G, et al. A differential delay line for optical coherence domain polarimetry[J]. Measurement Science and Technology, 2015, 26(4): 045102. doi: 10.1088/0957-0233/26/4/045102

    [16]

    Yuan Y G, Lu D C, Yang J, et al. Range extension of the optical delay line in white light interferometry[J]. Applied Optics, 2017, 56(16): 4598–4605. doi: 10.1364/AO.56.004598

    [17]

    Hua Y, Shu P, Zheng D S, et al. Method for improving extinction ratio of Y-waveguide chip for fiber-optic gyroscope: 103267998B[P]. 2013-08-28.

    [18]

    谢泽, 杨远洪, 闫晗, 等.光纤陀螺光纤环分布偏振耦合误差预估[J].中国激光, 2017, 44(10): 1006004. http://www.en.cnki.com.cn/Article_en/CJFDTotal-JJZZ201710024.htm

    Xie Z, Yang Y H, Yan H, et al. Estimation of distributed polarization coupling error in optical fiber coil of fiber optic gyroscope[J]. Chinese Journal of Lasers, 2017, 44(10): 1006004. http://www.en.cnki.com.cn/Article_en/CJFDTotal-JJZZ201710024.htm

    [19]

    李子忠, 李志宏, 姚晓天, 等.偏振串扰对光纤陀螺零漂及随机游走影响的研究[J].光学学报, 2014, 34(12): 1206001. doi: 10.3788/aos201434.1206001

    Li Z Z, Li Z H, Yao X T, et al. Research on influence of polarization crosstalk on the zero drift and random walk of fiber optic gyroscope[J]. Acta Optica Sinica, 2014, 34(12): 1206001. doi: 10.3788/aos201434.1206001

    [20]

    Yu Z J, Yang J, Yuan Y G, et al. High-resolution distributed dispersion characterization for polarization maintaining fibers based on a closed-loop measurement framework[J]. IEEE Photonics Journal, 2017, 9(3): 7103508.

    [21]

    Yu Z J, Yang J, Yuan Y G, et al. Quasi-distributed birefringence dispersion measurement for polarization maintain device with high accuracy based on white light interferometry[J]. Optics Express, 2016, 24(2): 1587–1597. doi: 10.1364/OE.24.001587

    [22]

    Jin J, Wang S, Song J M, et al. Novel dispersion compensation method for cross-coupling measurement in PM-PCF based on OCDP[J]. Optical Fiber Technology, 2013, 19(5): 495–500. doi: 10.1016/j.yofte.2013.06.003

    [23]

    Zhang H X, Chen X W, Ye W T, et al. Mitigation of the birefringence dispersion on the polarization coupling measurement in a long-distance high-birefringence fiber[J]. Measurement Science and Technology, 2012, 23(2): 025203. doi: 10.1088/0957-0233/23/2/025203

    [24]

    Yuan Y G, Li C, Yang J, et al. Simultaneous evaluation of two branches of a multifunctional integrated optic chip with an ultra-simple dual-channel configuration[J]. Photonics Research, 2015, 3(4): 115–118. doi: 10.1364/PRJ.3.000115

    [25]

    Li C, Yuan Y G, Yang J, et al. Inconsistency measurement between two branches of LiNbO3 integrated optic Y-junction[J]. Optics Communications, 2016, 369: 152–158. doi: 10.1016/j.optcom.2016.02.049

    [26]

    Peng F, Li C, Yang J, et al. Symmetry evaluation for an interferometric fiber optic gyro coil utilizing a bidirectional distributed polarization measurement system[J]. Applied Optics, 2017, 56(20): 5614–5619. doi: 10.1364/AO.56.005614

    [27]

    Takada K, Mitachi S. Polarization crosstalk dependence on length in silica-based waveguides measured by using optical low coherence interference[J]. Journal of Lightwave Technology, 1998, 16(8): 1413–1422. doi: 10.1109/50.704607

    [28]

    Zhang H L, Yang J, Li C, et al. Measurement error analysis for polarization extinction ratio of multifunctional integrated optic chips[J]. Applied Optics, 2017, 56(24): 6873–6880. doi: 10.1364/AO.56.006873

    [29]

    Tang F, Wang X Z, Zhang Y M, et al. Influence of birefringence dispersion on distributed measurement of polarization coupling in birefringent fibers[J]. Optical Engineering, 2007, 46(7): 075006. doi: 10.1117/1.2756065

    [30]

    Smith E D J, Zvyagin A V, Sampson D D. Real-time dispersion compensation in scanning interferometry[J]. Optics Letters, 2002, 27(22): 1998–2000. doi: 10.1364/OL.27.001998

  • 加载中

(8)

计量
  • 文章访问数:  9518
  • PDF下载数:  4498
  • 施引文献:  0
出版历程
收稿日期:  2017-10-09
修回日期:  2018-03-26
刊出日期:  2018-09-01

目录

/

返回文章
返回