Zhang Wentao, Huang Wenzhu, Li Fang. High-resolution fiber Bragg grating sensor and its applications of geophysical exploration, seismic observation and marine engineering[J]. Opto-Electronic Engineering, 2018, 45(9): 170615. doi: 10.12086/oee.2018.170615
Citation: Zhang Wentao, Huang Wenzhu, Li Fang. High-resolution fiber Bragg grating sensor and its applications of geophysical exploration, seismic observation and marine engineering[J]. Opto-Electronic Engineering, 2018, 45(9): 170615. doi: 10.12086/oee.2018.170615

High-resolution fiber Bragg grating sensor and its applications of geophysical exploration, seismic observation and marine engineering

    Fund Project: Supported by National Key R & D Program of China (2017YFB0405503), NSFC (61605196), and Youth Innovation Promotion Association of CAS (2016106)
More Information
  • With the development of fiber Bragg grating (FBG) and FBG based resonant cavity writing and signal demodulation technique, the measurement precision and frequency bandwidth of FBG sensor continue to be improved. It can highly promote its application in several fields of high precision detection requirements, such as geophysical exploration, seismic observation and marine observation. At present, the development of high-precision and wide bandwidth FBG sensors still face some challenges of key devices and techniques, including high-fineness FBG based resonant and low-noise narrow-linewidth tunable laser, high-precision broadband FBG wavelength demodulation technique, large-scale networking technique and high-sensitivity signal pickup probe design. Firstly, this paper introduces the development of high-precision FBG sensing technique. Secondly, it focuses on the cord devices and key techniques required for high-precision FBG sensing system and their applications in geophysical exploration, seismic observations and ocean observations. Finally, the high-precision FBG sensing technique and its application are prospected. In order to provide references for the development and application of high-precision fiber Bragg grating sensing technology, this paper aims to analyze and summarize some of the core techniques involved in high-precision FBG sensing technique and its application and the key issues that need to be solved.
  • 加载中
  • [1] Majumder M, Gangopadhyay T K, Chakraborty A K, et al. Fibre Bragg gratings in structural health monitoring—Present status and applications[J]. Sensors and Actuators A: Physical, 2008, 147(1): 150-164. doi: 10.1016/j.sna.2008.04.008

    CrossRef Google Scholar

    [2] Li H N, Li D S, Song G B. Recent applications of fiber optic sensors to health monitoring in civil engineering[J]. Engineering Structures, 2004, 26(11): 1647-1657. doi: 10.1016/j.engstruct.2004.05.018

    CrossRef Google Scholar

    [3] Willsch R, Ecke W, Bartelt H. Optical fiber grating sensor networks and their application in electric power facilities, aerospace and geotechnical engineering[C]//IEEE Optical Fiber Sensors Conference Technical Digest, 2002: 49-54.http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=1000499

    Google Scholar

    [4] Hill K O, Meltz G. Fiber Bragg grating technology fundamentals and overview[J]. Journal of Lightwave Technology, 1997, 15(8): 1263-1276. doi: 10.1109/50.618320

    CrossRef Google Scholar

    [5] Martinez A, Dubov M, Khrushchev I, et al. Direct writing of fibre Bragg gratings by femtosecond laser[J]. Electronics Letters, 2004, 40(19): 1170-1172. doi: 10.1049/el:20046050

    CrossRef Google Scholar

    [6] Zhao Y, Liao Y B. Discrimination methods and demodulation techniques for fiber Bragg grating sensors[J]. Optics and Lasers in Engineering, 2004, 41(1): 1-18. doi: 10.1016/S0143-8166(02)00117-3

    CrossRef Google Scholar

    [7] Davis M A, Kersey A D. Matched-filter interrogation technique for fibre Bragg grating arrays[J]. Electronics Letters, 1995, 31(10): 822-823. doi: 10.1049/el:19950547

    CrossRef Google Scholar

    [8] Fu H Y, Liu H L, Dong X, et al. High-speed fibre Bragg grating sensor interrogation using dispersion compensation fibre[J]. Electronics Letters, 2008, 44(10): 618-619. doi: 10.1049/el:20080859

    CrossRef Google Scholar

    [9] Kersey A D, Berkoff T A, Morey W W. Multiplexed fiber Bragg grating strain-sensor system with a fiber Fabry-Perot wavelength filter[J]. Optics Letters, 1993, 18(16): 1370-1372. doi: 10.1364/OL.18.001370

    CrossRef Google Scholar

    [10] 周振安, 刘爱英.光纤光栅传感器用于高精度应变测量研究[J].地球物理学进展, 2005, 20(3): 864-866. doi: 10.3969/j.issn.1004-2903.2005.03.047

    CrossRef Google Scholar

    Zhou Z A, Liu A Y. The application of Fiber Bragg grating sensor to high precision strain measure[J]. Progress in Geophysics, 2005, 20(3): 864-866. doi: 10.3969/j.issn.1004-2903.2005.03.047

    CrossRef Google Scholar

    [11] High sensitivity MEMS dual detector[OE/OL]. http://www.sitan-china.com/chanpinjieshao/wtyq/glmdm/.

    Google Scholar

    [12] TBA-33M downhole force balance accelerometer[OE/OL]. http://www.tai-de.com/details.php?name=tbatbg_33m&type=prod.

    Google Scholar

    [13] Accelerometer os7100[OE/OL]. http://www.micronoptics.com/product/accelerometer-os7100/.

    Google Scholar

    [14] Digital Hydrophone. [OE/OL]. http://www.acousnet.com/pro.aspx?id=158.

    Google Scholar

    [15] Pendry J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966

    CrossRef Google Scholar

    [16] Takahashi N, Yoshimura K, Takahashi S. Characteristics of fiber Bragg grating hydrophone[J]. IEICE Transactions on Electronics, 2000, 83(3): 275-281.

    Google Scholar

    [17] 邱泽华, 石耀霖.国外钻孔应变观测的发展现状[J].地震学报, 2004, 26(S1): 162-168.

    Google Scholar

    Qiu Z H, Shi Y L. Developments of borehole strain observation outside China[J]. Acta Seismologica Sinica, 2004, 26(S1): 162-168.

    Google Scholar

    [18] 池顺良.深井宽频钻孔应变地震仪与高频地震学——地震预测观测技术的发展方向, 实现地震预报的希望[J].地球物理学进展, 2007, 22(4): 1164-1170. doi: 10.3969/j.issn.1004-2903.2007.04.023

    CrossRef Google Scholar

    Chi S L. Deep-hole broad-band strain-seismograph and high-frequency seimology——the hope to successful earthquake prediction[J]. Progress in Geophysics, 2007, 22(4): 1164-1170. doi: 10.3969/j.issn.1004-2903.2007.04.023

    CrossRef Google Scholar

    [19] 刘育梁, 何俊, 王永杰, 等.光纤地震波探测的研究进展[J].激光与光电子学进展, 2009, 46(11): 21-28.

    Google Scholar

    Liu Y L, He J, Wang Y J, et al. Progress of seismic wave detection by fiber-optic sensors[J]. Laser & Optoelectronics Progress, 2009, 46(11): 21-28.

    Google Scholar

    [20] 刘文义, 张文涛, 李丽, 等.光纤传感技术——未来地震监测的发展方向[J].地震, 2012, 32(4): 92-102.

    Google Scholar

    Liu W Y, Zhang W T, Li L, et al. Optical fiber sensory technology: future direction for earthquake precursor monitoring[J]. Earthquake, 2012, 32(4): 92-102.

    Google Scholar

    [21] Lissak B, Arie A, Tur M. Highly sensitive dynamic strain measurements by locking lasers to fiber Bragg gratings[J]. Optics Letters, 1998, 23(24): 1930-1932. doi: 10.1364/OL.23.001930

    CrossRef Google Scholar

    [22] Arie A, Lissak B, Tur M. Static fiber-Bragg grating strain sensing using frequency-locked lasers[J]. Journal of Lightwave Technology, 1999, 17(10): 1849-1855. doi: 10.1109/50.793765

    CrossRef Google Scholar

    [23] Chow J H, Littler I C M, De Vine G, et al. Phase-sensitive interrogation of fiber Bragg grating resonators for sensing applications[J]. Journal of Lightwave Technology, 2005, 23(5): 1881-1889. doi: 10.1109/JLT.2005.846895

    CrossRef Google Scholar

    [24] Chow J H, Littler I C M, Mcclelland D E, et al. Laser frequency-noise-limited ultrahigh resolution remote fiber sensing[J]. Optics Express, 2006, 14(11): 4617-4624. doi: 10.1364/OE.14.004617

    CrossRef Google Scholar

    [25] Gagliardi G, Salza M, Ferraro P, et al. Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation[J]. Optics Express, 2005, 13(7): 2377-2384. doi: 10.1364/OPEX.13.002377

    CrossRef Google Scholar

    [26] Lam T T Y, Chow J H, Mow-Lowry C M, et al. A stabilized fiber laser for high-resolution low-frequency strain sensing[J]. IEEE Sensors Journal, 2009, 9(8): 983-986. doi: 10.1109/JSEN.2009.2024040

    CrossRef Google Scholar

    [27] Lam T T Y, Chow J H, Shaddock D A, et al. High-resolution absolute frequency referenced fiber optic sensor for quasi-static strain sensing[J]. Applied Optics, 2010, 49(21): 4029-4033. doi: 10.1364/AO.49.004029

    CrossRef Google Scholar

    [28] Gagliardi G, Salza M, Avino S, et al. Probing the ultimate limit of fiber-optic strain sensing[J]. Science, 2010, 330(6007): 1081-1084. doi: 10.1126/science.1195818

    CrossRef Google Scholar

    [29] Liu Q W, Tokunaga T, He Z Y. Realization of Nano static strain sensing with fiber Bragg gratings interrogated by narrow linewidth tunable lasers[J]. Optics Express, 2011, 19(21): 20214-20223. doi: 10.1364/OE.19.020214

    CrossRef Google Scholar

    [30] Liu Q W, Tokunaga T, He Z Y. Ultra-high-resolution large-dynamic-range optical fiber static strain sensor using Pound-Drever-Hall technique[J]. Optics Letters, 2011, 36(20): 4044-4046. doi: 10.1364/OL.36.004044

    CrossRef Google Scholar

    [31] Malara P, Mastronardi L, Campanella C E, et al. Split-mode fiber Bragg grating sensor for high-resolution static strain measurements[J]. Optics Letters, 2014, 39(24): 6899-6902. doi: 10.1364/OL.39.006899

    CrossRef Google Scholar

    [32] Chen J G, Liu Q W, He Z Y. Time-domain multiplexed high resolution fiber optics strain sensor system based on temporal response of fiber Fabry-Perot interferometers[J]. Optics Express, 2017, 25(18): 21914-21925. doi: 10.1364/OE.25.021914

    CrossRef Google Scholar

    [33] Huang W Z, Zhang W T, Zhen T K, et al. A cross-correlation method in wavelet domain for demodulation of FBG-FP static-strain sensors[J]. IEEE Photonics Technology Letters, 2014, 26(16): 1597-1600. doi: 10.1109/LPT.2014.2327969

    CrossRef Google Scholar

    [34] Huang W Z, Zhang W T, Zhen T K, et al. π-phase-shifted FBG for high-resolution static-strain measurement based on wavelet threshold denoising algorithm[J]. Journal of Lightwave Technology, 2014, 32(22): 3692-3698. doi: 10.1109/JLT.2014.2354413

    CrossRef Google Scholar

    [35] Huang W Z, Zhang W T, Li F. Swept optical SSB-SC modulation technique for high-resolution large-dynamic-range static strain measurement using FBG-FP sensors[J]. Optics Letters, 2015, 40(7): 1406-1409. doi: 10.1364/OL.40.001406

    CrossRef Google Scholar

    [36] Yoshino T, Kurosawa K, Itoh K, et al. Fiber-optic Fabry-Perot interferometer and its sensor applications[J]. IEEE Transactions on Microwave Theory and Techniques, 1982, 30(10): 1612-1621. doi: 10.1109/TMTT.1982.1131298

    CrossRef Google Scholar

    [37] 吴朝霞, 吴飞, 蔡璐璐, 等. Bragg光纤光栅法布里-珀罗传感器的应变测量[J].光学技术, 2005, 31(4): 559-562.

    Google Scholar

    Wu Z X, Wu F, Cai L L, et al. Strain measurement using a fiber Bragg grating Fabry-Perot sensor[J]. Optical Technique, 2005, 31(4): 559-562.

    Google Scholar

    [38] Tsai W H, Lin C J. A novel structure for the intrinsic Fabry-Perot fiber-optic temperature sensor[J]. Journal of Lightwave Technology, 2001, 19(5): 682-686. doi: 10.1109/50.923481

    CrossRef Google Scholar

    [39] Avino S, Giorgini A, De Natale P, et al. Fiber-optic resonators for strain-acoustic sensing and chemical spectroscopy[M]//GAGLIARDI G, LOOCK H P. Cavity-Enhanced Spectroscopy and Sensing. Berlin, Heidelberg: Springer, 2014: 463-484.

    Google Scholar

    [40] Huang W Z, Feng S W, Zhang W T, et al. DFB fiber laser static strain sensor based on beat frequency interrogation with a reference fiber laser locked to a FBG resonator[J]. Optics Express, 2016, 24(11): 12321-12329. doi: 10.1364/OE.24.012321

    CrossRef Google Scholar

    [41] Rønnekleiv E. Frequency and intensity noise of single frequency fiber Bragg grating lasers[J]. Optical Fiber Technology, 2001, 7(3): 206-235. doi: 10.1006/ofte.2001.0357

    CrossRef Google Scholar

    [42] New low noise koheras basik and adjustik fiber laser[EB/OL]. http://www.nktphotonics.com/lasers-fibers/en/2016/06/07/new-koheras-basik-adjustik-fiber-lasers/.

    Google Scholar

    [43] Chen J G, Liu Q W, Fan X Y, et al. Sub-Nano-strain multiplexed fiber optic sensor array for quasi-static strain measurement[J]. IEEE Photonics Technology Letters, 2016, 28(21): 2311-2314. doi: 10.1109/LPT.2016.2592506

    CrossRef Google Scholar

    [44] 张文涛, 黄稳柱, 罗英波, 等.高精度光纤光栅地震计[J].传感技术学报, 2017, 30(4): 491-495.

    Google Scholar

    Zhang W T, Huang W Z, Luo Y B, et al. High resolution fiber optic seismometer[J]. Chinese Journal of Sensors and Actuators, 2017, 30(4): 491-495.

    Google Scholar

    [45] Knudsen S, Havsgård G B, Berg A, et al. High resolution fiber-optic 3-C seismic sensor system for in-well imaging and monitoring applications[C]//Proceedings of the 18th International Conference on Optical Fiber Sensors, 2006: FB2. http://www.opticsinfobase.org/abstract.cfm?uri=OFS-2006-FB2

    Google Scholar

    [46] 耿启立.地震数据采集系统产品现状及发展趋势(上)[J].地质装备, 2016, 17(5): 21-31, 37.

    Google Scholar

    [47] 曾然, 林君, 赵玉江.地震检波器的发展现状及其在地震台阵观测中的应用[J].地球物理学进展, 2014, 29(5): 2106-2112. doi: 10.6038/pg20140517

    CrossRef Google Scholar

    Zeng R, Lin J, Zhao Y J. Development situation of geophones and its application in seismic array observation[J]. Progress in Geophysics, 2014, 29(5): 2106-2112. doi: 10.6038/pg20140517

    CrossRef Google Scholar

    [48] Zhang Y, Ning J, Yang S M, et al. Field test investigation of fiber optic seismic geophone in oilfield exploration[J]. Proceedings of SPIE, 2007, 6770: 677005. doi: 10.1117/12.734274

    CrossRef Google Scholar

    [49] The high performance optical fiber seismometer of institute of semiconductors was successfully tested in liaohe oilfield [EB/OL] http://www.cas.cn/ky/kyjz/201102/t20110216_3071949.shtml.

    Google Scholar

    [50] Zumberge M A, Wyatt F K, Yu D X, et al. Optical fibers for measurement of earth strain[J]. Applied Optics, 1988, 27(19): 4131-4138. doi: 10.1364/AO.27.004131

    CrossRef Google Scholar

    [51] Gagliardi G, Maddaloni P, Malara P, et al. Ultra-high sensitivity frequency-comb-referenced multi-parametric sensors based on 1-D photonic components[J]. Proceedings of SPIE, 2008, 7056: 70560I. doi: 10.1117/12.795015

    CrossRef Google Scholar

    [52] Liu Q W, He Z Y, Tokunaga T. Sensing the earth crustal deformation with Nano-strain resolution fiber-optic sensors[J]. Optics Express, 2015, 23(11): A428-A436. doi: 10.1364/OE.23.00A428

    CrossRef Google Scholar

    [53] 何祖源, 刘庆文, 陈嘉庚.面向地壳形变观测的超高分辨率光纤应变传感系统[J].物理学报, 2017, 66(7): 074208. doi: 10.7498/aps.66.074208

    CrossRef Google Scholar

    He Z Y, Liu Q W, Chen J G. Ultrahigh resolution fiber optic strain sensing system for crustal deformation observation[J]. Acta Physica Sinica, 2017, 66(7): 074208. doi: 10.7498/aps.66.074208

    CrossRef Google Scholar

    [54] 李海亮, 李宏.钻孔应变观测现状与展望[J].地质学报, 2010, 84(6): 895-900.

    Google Scholar

    Li H L, Li H. Status and developments of borehole strain observations in China[J]. Acta Geologica Sinica, 2010, 84(6): 895-900.

    Google Scholar

    [55] 邱泽华, 谢富仁, 苏恺之, 等.发展钻孔应变观测的战略构想[J].国际地震动态, 2004(1): 7-14.

    Google Scholar

    Qiu Z H, Xie F R, Su K Z, et al. New era of borehole strain observation[J]. Recent Developments in world Seismology, 2004(1): 7-14.

    Google Scholar

    [56] 张文涛, 李芳. 光纤钻孔应变仪: 中国, CN201110272950. 6[P]. 2012-01-18.

    Google Scholar

    Zhang W T, Li F. Optical fiber drilling strain gauge: CN, CN201110272950. 6[P]. 2012-01-18.

    Google Scholar

    [57] 张文涛, 李芳. 光纤体应变仪: 中国, CN201110272995. 3[P]. 2012-02-22.http://www.irgrid.ac.cn/handle/1471x/488793

    Google Scholar

    Zhang W T, Li F. Fiber body strain gauge: CN, CN201110272995. 3[P]. 2012-02-22.

    Google Scholar

    [58] 张文涛, 李芳. 分量式光纤钻孔应变仪: 中国, CN2011102723 89. 1[P]. 2012-02-22.http://www.irgrid.ac.cn/handle/1471x/488794

    Google Scholar

    Zhang W T, Li F. Component-type optical fiber drilling deformeter: CN, CN201110272389. 1[P]. 2012-02-22.

    Google Scholar

    [59] 张文涛, 李芳. 一种测量状态量的光纤钻孔应变仪: 中国, CN201110272925. 8[P]. 2012-05-22.http://www.irgrid.ac.cn/handle/1471x/488789

    Google Scholar

    Zhang W T, Li F. Optical fiber borehole strainmeter for measuring state quantity: CN, CN201110272925. 8[P]. 2012-05-22.

    Google Scholar

    [60] Permanent reservoir monitoring[EB/OL]. https://www.pgs.com/marine-acquisition/services/permanent-reservoir-monitoring/.

    Google Scholar

    [61] Fujihashi K, Aoki T, Okutsu M, et al. Development of seafloor seismic and tsunami observation system[C]//Proceedings of 2007 Symposium on Underwater Technology and Workshop on Scientific Use of Submarine Cables and Related Technologies, 2007: 349-355.

    Google Scholar

    [62] 电科.中国电科成功研制海洋地震海啸监测用光纤传感器系统[J].军民两用技术与产品, 2014(12): 38.

    Google Scholar

    [63] Zhang W T, Wang Z G, Huang W Z, et al. Fiber laser sensors for micro seismic monitoring[J]. Measurement, 2016, 79: 203-210. doi: 10.1016/j.measurement.2015.09.046

    CrossRef Google Scholar

  • Overview: Nowadays, with the development of fiber Bragg grating (FBG) and FBG based resonant cavity engraving technique, signal demodulation technique, the measurement precision and frequency band range of FBG sensor are constantly improved. This can greatly promote its application in the field of geophysical exploration, seismic observation and marine observation. At present, high-precision broadband FBG sensor is still facing some challenges about core devices and key techniques. The core devices include high-fineness FBG based resonant, low-noise narrow-linewidth tunable laser. The key techniques include high-precision broadband FBG wavelength demodulation technique, large-scale networking technique and high-sensitivity signal pickup probe design. Firstly, this paper introduces the development of high-precision FBG sensing technique. Nearly three years, some novel sensing mechanism, demodulation method and sensing applications have been proposed. This improves the FBG low-frequency strain measurement resolution to 10-10, which makes it possible for the FBG sensors to be applied in geophysical exploration, seismic observation and marine observation. However, the system measurement resolution and dynamic range still need to be further improved. The high-precision temperature compensation and large-scale multiplexing technique are also the key problems to be solved. Secondly, this paper focuses on the cord devices and key techniques required for high-precision FBG sensing system and their applications in geophysical exploration, seismic observations and ocean observation. The cord devices include high-fineness FBG resonator, low noise narrow linewidth tunable laser. The key techniques include high-resolution broadband FBG signal interrogation technique, large-scale networking technique and high sensitivity signal detector design. Finally, in order to provide references for the development and application of high-precision fiber Bragg grating sensing technology, this paper aims to analyze and summarize some of the core techniques involved in high-precision FBG sensing technique and its application and the key issues that need to be solved in the field of geophysical exploration, seismic observation and marine observation.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Article Metrics

Article views(12382) PDF downloads(6133) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint