Gao Chunming, Nie Feng, Zhang Ping, et al. Optical fiber acoustic sensors[J]. Opto-Electronic Engineering, 2018, 45(9): 180050. doi: 10.12086/oee.2018.180050
Citation: Gao Chunming, Nie Feng, Zhang Ping, et al. Optical fiber acoustic sensors[J]. Opto-Electronic Engineering, 2018, 45(9): 180050. doi: 10.12086/oee.2018.180050

Optical fiber acoustic sensors

    Fund Project: Supported by National Natural Science Found of China (61379013), National Key R & D Plan (2017YFB1103002) and Sichuan Science and Technology Project (2016GZ0002)
More Information
  • Optical fiber acoustic sensors are a kind of acoustic sensors that use optical fibers as light-propagating media or detection units. Compared to traditional electro-acoustic sensors, it features high sensitivity, broad-band frequency response, anti-electromagnetic interference etc, thus very promising for national security, industrial non-destructive testing, medical diagnostics, consumer electronics etc. Optical fiber acoustic sensors are classified, in terms of the coupling mode between acoustic field and light, as indirect and direct coupling types. The former presents some problems such as uneven frequency response, narrower bandwidth, and smaller dynamic range due to the frequency response features of the acoustic coupling materials, while the latter has overcome these shortcomings and thus possesses broad development potential.
  • 加载中
  • [1] Bell A G. Upon the production and reproduction of sound by light[J]. Journal of the Society of Telegraph Engineers, 1880, 9(34): 404-426. doi: 10.1049/jste-1.1880.0046

    CrossRef Google Scholar

    [2] Bucaro J A, Dardy H D, Carome E F. Fiber-optic hydrophone[J]. The Journal of the Acoustical Society of America, 1977, 62(5): 1302-1304. doi: 10.1121/1.381624

    CrossRef Google Scholar

    [3] Culshaw B, Davies D E N, Kingsley S A. Acoustic sensitivity of optical-fibre waveguides[J]. Electronics Letters, 1977, 13(25): 760-761. doi: 10.1049/el:19770537

    CrossRef Google Scholar

    [4] Wild G, Hinckley S. Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art[J]. IEEE Sensors Journal, 2008, 8(7): 1184-1193. doi: 10.1109/JSEN.2008.926894

    CrossRef Google Scholar

    [5] Fischer B. Optical microphone hears ultrasound[J]. Nature Photonics, 2016, 10(6): 356-358. doi: 10.1038/nphoton.2016.95

    CrossRef Google Scholar

    [6] Preisser S, Rohringer W, Liu M Y, et al. All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging[J]. Biomedical Optics Express, 2016, 7(10): 4171-4186. doi: 10.1364/BOE.7.004171

    CrossRef Google Scholar

    [7] 乔学光, 邵志华, 包维佳, 等.光纤超声传感器及应用研究进展[J].物理学报, 2017, 66(7): 074205. doi: 10.7498/aps.66.074205

    CrossRef Google Scholar

    Qiao X G, Shao Z H, Bao W J, et al. Fiber-optic ultrasonic sensors and applications[J]. Acta Physica Sinica, 2017, 66(7): 074205. doi: 10.7498/aps.66.074205

    CrossRef Google Scholar

    [8] Bilaniuk N. Optical microphone transduction techniques[J]. Applied Acoustics, 1997, 50(1): 35-63. doi: 10.1016/S0003-682X(96)00034-5

    CrossRef Google Scholar

    [9] Chen R, Fernando G F, Butler T, et al. A novel ultrasound fibre optic sensor based on a fused-tapered optical fibre coupler[J]. Measurement Science and Technology, 2004, 15(8): 1490-1495. doi: 10.1088/0957-0233/15/8/010

    CrossRef Google Scholar

    [10] Li F M, Liu Y Y, Wang L J, et al. Investigation on the response of fused taper couplers to ultrasonic wave[J]. Applied Optics, 2015, 54(23): 6986-6993. doi: 10.1364/AO.54.006986

    CrossRef Google Scholar

    [11] Spillman S W, Jr, Gravel R L. Moving fiber-optic hydrophone[J]. Optics Letters, 1980, 5(1): 30-31. doi: 10.1364/OL.5.000030

    CrossRef Google Scholar

    [12] Spillman S W, Jr, McMahon D H. Frustrated-total-internal-reflection multimode fiber-optic hydrophone[J]. Applied Optics, 1980, 19(1): 113-117. doi: 10.1364/AO.19.000113

    CrossRef Google Scholar

    [13] Rines G A. Fiber-optic accelerometer with hydrophone applications[J]. Applied Optics, 1981, 20(19): 3453-3459. doi: 10.1364/AO.20.003453

    CrossRef Google Scholar

    [14] 于洪峰, 王伟, 王世宁, 等.一种基于感声波纹结构的光学式声传感器[J].传感器与微系统, 2014, 33(9): 68-70, 73. doi: 10.13873/J.1000-9787(2014)09-0068-03

    CrossRef Google Scholar

    Yu H F, Wang W, Wang S N, et al. An optical acoustic sensor based on acoustics-sensitive corrugated configuration[J]. Transducer and Microsystem Technologies, 2014, 33(9): 68-70, 73. doi: 10.13873/J.1000-9787(2014)09-0068-03

    CrossRef Google Scholar

    [15] Nessaiver M S, Stone M, Vijay Parthasarathy M S, et al. Recording high quality speech during tagged cine‐MRI studies using a fiber optic microphone[J]. Journal of Magnetic Resonance Imaging, 2006, 23(1): 92-97. doi: 10.1002/jmri.v23:1

    CrossRef Google Scholar

    [16] Optoacoustics. Optimic 1140 - Indoor monitoring applications[EB/OL]. 2007. http://www.optoacoustics.com/industrial/optimic-microphones/optimic-1140.

    Google Scholar

    [17] Bucaro J A, Dardy H D, Carome E F. Optical fiber acoustic sensor[J]. Applied Optics, 1977, 16(7): 1761-1762. doi: 10.1364/AO.16.001761

    CrossRef Google Scholar

    [18] Wen H, Wiesler D G, Tveten A, et al. High-sensitivity fiber-optic ultrasound sensors for medical imaging applications[J]. Ultrasonic Imaging, 1998, 20(2): 103-112. doi: 10.1177/016173469802000202

    CrossRef Google Scholar

    [19] Gallego D, Lamela H. High-sensitivity ultrasound interferometric single-mode polymer optical fiber sensors for biomedical applications[J]. Optics Letters, 2009, 34(12): 1807-1809. doi: 10.1364/OL.34.001807

    CrossRef Google Scholar

    [20] Shajenko P. Multimode optical fibers as sensing devices[J]. Applied Optics, 1982, 21(23): 4185-4186. doi: 10.1364/AO.21.004185

    CrossRef Google Scholar

    [21] Lagakos N, Schnaus E U, Cole J H, et al. Optimizing fiber coatings for interferometric acoustic sensors[J]. IEEE Journal of Quantum Electronics, 1982, 18(4): 683-689. doi: 10.1109/JQE.1982.1071565

    CrossRef Google Scholar

    [22] Hocker G B. Fiber-optic acoustic sensors with increased sensitivity by use of composite structures[J]. Optics Letters, 1979, 4(10): 320-321. doi: 10.1364/OL.4.000320

    CrossRef Google Scholar

    [23] Xu F, Shi J H, Gong K, et al. Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm[J]. Optics Letters, 2014, 39(10): 2838-2840. doi: 10.1364/OL.39.002838

    CrossRef Google Scholar

    [24] Imai M, Ohashi T, Ohtsuka Y. Fiber-optic Michelson interferometer using an optical power divider[J]. Optics Letters, 1980, 5(10): 418-420. doi: 10.1364/OL.5.000418

    CrossRef Google Scholar

    [25] Udd E. Fiber-optic acoustic sensor based on the Sagnac interferometer[J]. Proceedings of SPIE, 1983, 425: 90-95. doi: 10.1117/12.936219

    CrossRef Google Scholar

    [26] Zhang X L, Meng Z, Hu Z L. Sensing system with Michelson-type fiber optical interferometer based on single FBG reflector[J]. Chinese Optics Letters, 2011, 9(11): 110601. doi: 10.3788/COL

    CrossRef Google Scholar

    [27] Liu L, Lu P, Liao H, et al. Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm[J]. IEEE Sensors Journal, 2016, 16(9): 3054-3058. doi: 10.1109/JSEN.2016.2526644

    CrossRef Google Scholar

    [28] Markowski K, Turkiewicz J, Osuch T. Optical microphone based on Sagnac interferometer with polarization maintaining optical fibers[J]. Proceedings of SPIE, 2013, 8903: 89030Q-1- 89030Q-7. doi: 10.1117/12.2049644

    CrossRef Google Scholar

    [29] Ma J, Yu Y Q, Jin W. Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias[J]. Optics Express, 2015, 23(22): 29268-29278. doi: 10.1364/OE.23.029268

    CrossRef Google Scholar

    [30] Murphy K A, Gunther M F, Vengsarkar A M, et al. Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors[J]. Optics Letters, 1991, 16(4): 273-275. doi: 10.1364/OL.16.000273

    CrossRef Google Scholar

    [31] Lee C E, Taylor H F. Interferometric optical fibre sensors using internal mirrors[J]. Electronics Letters, 1988, 24(4): 193-194. doi: 10.1049/el:19880128

    CrossRef Google Scholar

    [32] Beard P C, Mills T N. Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer[J]. Applied Optics, 1996, 35(4): 663-675. doi: 10.1364/AO.35.000663

    CrossRef Google Scholar

    [33] Wang F Y, Shao Z Z, Xie J H, et al. Extrinsic Fabry-Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm[J]. Journal of Lightwave Technology, 2014, 32(23): 4628-4636. doi: 10.1109/JLT.2014.2362494

    CrossRef Google Scholar

    [34] Ma J, Xuan H F, Ho H L, et al. Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm[J]. IEEE Photonics Technology Letters, 2013, 25(10): 932-935. doi: 10.1109/LPT.2013.2256343

    CrossRef Google Scholar

    [35] Wu Y, Yu C B, Wu F, et al. A highly sensitive fiber-optic microphone based on graphene oxide membrane[J]. Journal of Lightwave Technology, 2017, 35(9): 4344-4349. doi: 10.1109/JLT.2017.2737639

    CrossRef Google Scholar

    [36] Guo F W, Fink T, Han M, et al. High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm[J]. Optics Letters, 2012, 37(9): 1505-1507. doi: 10.1364/OL.37.001505

    CrossRef Google Scholar

    [37] Akkaya O C, Kilic O, Digonnet M J F, et al. High-sensitivity thermally stable acoustic fiber sensor[C]//Proceedings of 2010 IEEE Sensors, 2010: 1148-1151.http://ieeexplore.ieee.org/xpls/icp.jsp?arnumber=5690823

    Google Scholar

    [38] Wang W H, Wu N, Tian Y, et al. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm[J]. Optics Express, 2010, 18(9): 9006-9014. doi: 10.1364/OE.18.009006

    CrossRef Google Scholar

    [39] Webb D J. An ocean model code for array processor computers[J]. Computers & Geosciences, 1996, 22(5): 569-578. doi: 10.1016/0098-3004(95)00133-6

    CrossRef Google Scholar

    [40] Takahashi N, Yoshimura K, Takahashi S, et al. Development of an optical fiber hydrophone with fiber Bragg grating[J]. Ultrasonics, 2000, 38(1-8): 581-585. doi: 10.1016/S0041-624X(99)00105-5

    CrossRef Google Scholar

    [41] Guan B O, Tam H Y, Lau S T, et al. Ultrasonic hydrophone based on distributed Bragg reflector fiber laser[J]. IEEE Photonics Technology Letters, 2005, 17(1): 169-171. doi: 10.1109/LPT.2004.838141

    CrossRef Google Scholar

    [42] Wu Q, Okabe Y. High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system[J]. Optics Express, 2012, 20(27): 28353-28362. doi: 10.1364/OE.20.028353

    CrossRef Google Scholar

    [43] Tosi D, Olivero M, Perrone G. Optical microphone with fiber Bragg grating and signal processing techniques[J]. Proceedings of SPIE, 2008, 7098: 70981E. doi: 10.1117/12.803184

    CrossRef Google Scholar

    [44] Nawa Y, Tsuda N, Yamada J. Small vibration sensor using self-coupling effect of semiconductor laser[J]. Review of Laser Engineering, 2008, 37(8): 619-623. doi: 10.2184/lsj.37.619

    CrossRef Google Scholar

    [45] Mizushima D, Yoshimatsu T, Goshima K, et al. Sound detection by laser microphone using self-coupling effect of semiconductor laser[J]. IEEJ Transactions on Electronics, Information and Systems, 2016, 136(7): 1021-1026. doi: 10.1541/ieejeiss.136.1021

    CrossRef Google Scholar

    [46] Mizushima D, Tsuda N, Yamada J. Study on laser microphone using self-couping effect of semiconductor laser for sensitivity improvement[C]//Proceedings of 2016 IEEE SENSORS, 2017: 1-3.http://ieeexplore.ieee.org/document/7808478/

    Google Scholar

    [47] Fischer B, Fruthwirth R, Wintner E. Optical pressure transducer without membrane: an analysis of sensor noise sources[C]//INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 2011.http://www.ingentaconnect.com/content/ince/incecp/2011/00002011/00000005/art00088

    Google Scholar

    [48] Ciddor P E. Refractive index of air: new equations for the visible and near infrared[J]. Applied Optics, 1996, 35(9): 1566-1573. doi: 10.1364/AO.35.001566

    CrossRef Google Scholar

    [49] Xarion Laser Acoustics. Membrane-free optical microphones[EB/OL]. (2017) http://xarion.com/products.

    Google Scholar

    [50] Fischer B, Reining F, Wintner E. Optical sensor: EP2525194 A1[P]. 2012-11-21.http://www.freepatentsonline.com/ep2525194.html

    Google Scholar

  • Overview: Sound wave as the carrier of information and energy is the natural phenomena which has been paid attention to study for the first time. With the rapid development of information technology, the detection of acoustic signals with high sensitivity and large bandwidth becomes more and more important. In recent years, the research focus of acoustic sensors has been developed from electro-acoustic sensing technology to photoacoustic sensing technology. Optical fiber sensing technology was developed rapidly in the 70 s of last century. Due to the high precision of light detection and the advantages of fiber working frequency band and small transmission loss, optical fiber acoustic sensor features high sensitivity, broad-band frequency response, high signal to noise ratio and high dynamic range compared with space optical microphones and traditional electroacoustic sensors. Furthermore, because of its immune electromagnetic interference and miniaturization, it can be used in environments with high temperature, high pressure, strong corrosion and strong radiation that traditional electroacoustic sensors can not work normally. Therefore, optical fiber acoustic sensor has been valued and widely used in the national security, industrial non-destructive testing, medical diagnostics, consumer electronics etc. In this paper, from the perspective of the frequency response curve of optical fiber acoustic sensors, optical fiber acoustic sensors are classified as indirect and direct coupling types by introducing a new classification method based on whether acoustic coupling materials are used or not.

    As shown in the figure above, indirect coupling type, including light intensity modulation, phase modulation and wavelength modulation, present some problems such as uneven frequency response, narrower bandwidth, and smaller dynamic range due to the frequency response features of the acoustic coupling materials. While direct coupling type, including the self-coupling effect and Fabry-Perot etalon (FPE) optical fiber sensors, have overcome these shortcomings and thus have very good linear frequency response characteristics, large bandwidth and large dynamic range. Direct coupling optical fiber acoustic sensor technology has got rid of limitations from acoustic coupling materials by using direct coupling of light and sound field, especially FPE optical fiber sensing technology can make full use of light multi-reflection characteristic of the cavity to further enhance the detection sensitivity, which is a new technology with great development value.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(13468) PDF downloads(5974) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint