Optical fiber acoustic sensors are a kind of acoustic sensors that use optical fibers as light-propagating media or detection units. Compared to traditional electro-acoustic sensors, it features high sensitivity, broad-band frequency response, anti-electromagnetic interference etc, thus very promising for national security, industrial non-destructive testing, medical diagnostics, consumer electronics etc. Optical fiber acoustic sensors are classified, in terms of the coupling mode between acoustic field and light, as indirect and direct coupling types. The former presents some problems such as uneven frequency response, narrower bandwidth, and smaller dynamic range due to the frequency response features of the acoustic coupling materials, while the latter has overcome these shortcomings and thus possesses broad development potential.
Home > Journal Home > Opto-Electronic Engineering
Opto-Electronic Engineering
ISSN: 1003-501X
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
Optical fiber acoustic sensors
Author Affiliations

First published at:Sep 01, 2018
Abstract
Overview
References
1 Bell A G. Upon the production and reproduction of sound by light[J]. Journal of the Society of Telegraph Engineers, 1880, 9(34): 404-426. DOI:10.1049/jste-1.1880.0046
2 Bucaro J A, Dardy H D, Carome E F. Fiber-optic hydrophone[J]. The Journal of the Acoustical Society of America, 1977, 62(5): 1302-1304. DOI:10.1121/1.381624
3 Culshaw B, Davies D E N, Kingsley S A. Acoustic sensitivity of optical-fibre waveguides[J]. Electronics Letters, 1977, 13(25): 760-761. DOI:10.1049/el:19770537
4 Wild G, Hinckley S. Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art[J]. IEEE Sensors Journal, 2008, 8(7): 1184-1193. DOI:10.1109/JSEN.2008.926894
5 Fischer B. Optical microphone hears ultrasound[J]. Nature Photonics, 2016, 10(6): 356-358. DOI:10.1038/nphoton.2016.95
6 Preisser S, Rohringer W, Liu M Y, et al. All-optical highly sensitive akinetic sensor for ultrasound detection and photoacoustic imaging[J]. Biomedical Optics Express, 2016, 7(10): 4171-4186. DOI:10.1364/BOE.7.004171
7 Qiao X G, Shao Z H, Bao W J, et al. Fiber-optic ultrasonic sensors and applications[J]. Acta Physica Sinica, 2017, 66(7): 074205. DOI:10.7498/aps.66.074205
乔学光, 邵志华, 包维佳, 等.光纤超声传感器及应用研究进展[J].物理学报, 2017, 66(7): 074205. DOI:10.7498/aps.66.074205
8 Bilaniuk N. Optical microphone transduction techniques[J]. Applied Acoustics, 1997, 50(1): 35-63. DOI:10.1016/S0003-682X(96)00034-5
9 Chen R, Fernando G F, Butler T, et al. A novel ultrasound fibre optic sensor based on a fused-tapered optical fibre coupler[J]. Measurement Science and Technology, 2004, 15(8): 1490-1495. DOI:10.1088/0957-0233/15/8/010
10 Li F M, Liu Y Y, Wang L J, et al. Investigation on the response of fused taper couplers to ultrasonic wave[J]. Applied Optics, 2015, 54(23): 6986-6993. DOI:10.1364/AO.54.006986
11 Spillman S W, Jr, Gravel R L. Moving fiber-optic hydrophone[J]. Optics Letters, 1980, 5(1): 30-31. DOI:10.1364/OL.5.000030
12 Spillman S W, Jr, McMahon D H. Frustrated-total-internal-reflection multimode fiber-optic hydrophone[J]. Applied Optics, 1980, 19(1): 113-117. DOI:10.1364/AO.19.000113
13 Rines G A. Fiber-optic accelerometer with hydrophone applications[J]. Applied Optics, 1981, 20(19): 3453-3459. DOI:10.1364/AO.20.003453
14 Yu H F, Wang W, Wang S N, et al. An optical acoustic sensor based on acoustics-sensitive corrugated configuration[J]. Transducer and Microsystem Technologies, 2014, 33(9): 68-70, 73. DOI:10.13873/J.1000-9787(2014)09-0068-03
于洪峰, 王伟, 王世宁, 等.一种基于感声波纹结构的光学式声传感器[J].传感器与微系统, 2014, 33(9): 68-70, 73. DOI:10.13873/J.1000-9787(2014)09-0068-03
15 Nessaiver M S, Stone M, Vijay Parthasarathy M S, et al. Recording high quality speech during tagged cine‐MRI studies using a fiber optic microphone[J]. Journal of Magnetic Resonance Imaging, 2006, 23(1): 92-97. DOI:10.1002/jmri.v23:1
16 Optoacoustics. Optimic 1140 - Indoor monitoring applications[EB/OL]. 2007. http://www.optoacoustics.com/industrial/optimic-microphones/optimic-1140.
17 Bucaro J A, Dardy H D, Carome E F. Optical fiber acoustic sensor[J]. Applied Optics, 1977, 16(7): 1761-1762. DOI:10.1364/AO.16.001761
18 Wen H, Wiesler D G, Tveten A, et al. High-sensitivity fiber-optic ultrasound sensors for medical imaging applications[J]. Ultrasonic Imaging, 1998, 20(2): 103-112. DOI:10.1177/016173469802000202
19 Gallego D, Lamela H. High-sensitivity ultrasound interferometric single-mode polymer optical fiber sensors for biomedical applications[J]. Optics Letters, 2009, 34(12): 1807-1809. DOI:10.1364/OL.34.001807
20 Shajenko P. Multimode optical fibers as sensing devices[J]. Applied Optics, 1982, 21(23): 4185-4186. DOI:10.1364/AO.21.004185
21 Lagakos N, Schnaus E U, Cole J H, et al. Optimizing fiber coatings for interferometric acoustic sensors[J]. IEEE Journal of Quantum Electronics, 1982, 18(4): 683-689. DOI:10.1109/JQE.1982.1071565
22 Hocker G B. Fiber-optic acoustic sensors with increased sensitivity by use of composite structures[J]. Optics Letters, 1979, 4(10): 320-321. DOI:10.1364/OL.4.000320
23 Xu F, Shi J H, Gong K, et al. Fiber-optic acoustic pressure sensor based on large-area nanolayer silver diaghragm[J]. Optics Letters, 2014, 39(10): 2838-2840. DOI:10.1364/OL.39.002838
24 Imai M, Ohashi T, Ohtsuka Y. Fiber-optic Michelson interferometer using an optical power divider[J]. Optics Letters, 1980, 5(10): 418-420. DOI:10.1364/OL.5.000418
25 Udd E. Fiber-optic acoustic sensor based on the Sagnac interferometer[J]. Proceedings of SPIE, 1983, 425: 90-95. DOI:10.1117/12.936219
26 Zhang X L, Meng Z, Hu Z L. Sensing system with Michelson-type fiber optical interferometer based on single FBG reflector[J]. Chinese Optics Letters, 2011, 9(11): 110601. DOI:10.3788/COL
27 Liu L, Lu P, Liao H, et al. Fiber-optic michelson interferometric acoustic sensor based on a PP/PET diaphragm[J]. IEEE Sensors Journal, 2016, 16(9): 3054-3058. DOI:10.1109/JSEN.2016.2526644
28 Markowski K, Turkiewicz J, Osuch T. Optical microphone based on Sagnac interferometer with polarization maintaining optical fibers[J]. Proceedings of SPIE, 2013, 8903: 89030Q-1- 89030Q-7. DOI:10.1117/12.2049644
29 Ma J, Yu Y Q, Jin W. Demodulation of diaphragm based acoustic sensor using Sagnac interferometer with stable phase bias[J]. Optics Express, 2015, 23(22): 29268-29278. DOI:10.1364/OE.23.029268
30 Murphy K A, Gunther M F, Vengsarkar A M, et al. Quadrature phase-shifted, extrinsic Fabry-Perot optical fiber sensors[J]. Optics Letters, 1991, 16(4): 273-275. DOI:10.1364/OL.16.000273
31 Lee C E, Taylor H F. Interferometric optical fibre sensors using internal mirrors[J]. Electronics Letters, 1988, 24(4): 193-194. DOI:10.1049/el:19880128
32 Beard P C, Mills T N. Extrinsic optical-fiber ultrasound sensor using a thin polymer film as a low-finesse Fabry-Perot interferometer[J]. Applied Optics, 1996, 35(4): 663-675. DOI:10.1364/AO.35.000663
33 Wang F Y, Shao Z Z, Xie J H, et al. Extrinsic Fabry-Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm[J]. Journal of Lightwave Technology, 2014, 32(23): 4628-4636. DOI:10.1109/JLT.2014.2362494
34 Ma J, Xuan H F, Ho H L, et al. Fiber-optic Fabry-Pérot acoustic sensor with multilayer graphene diaphragm[J]. IEEE Photonics Technology Letters, 2013, 25(10): 932-935. DOI:10.1109/LPT.2013.2256343
35 Wu Y, Yu C B, Wu F, et al. A highly sensitive fiber-optic microphone based on graphene oxide membrane[J]. Journal of Lightwave Technology, 2017, 35(9): 4344-4349. DOI:10.1109/JLT.2017.2737639
36 Guo F W, Fink T, Han M, et al. High-sensitivity, high-frequency extrinsic Fabry-Perot interferometric fiber-tip sensor based on a thin silver diaphragm[J]. Optics Letters, 2012, 37(9): 1505-1507. DOI:10.1364/OL.37.001505
38 Wang W H, Wu N, Tian Y, et al. Miniature all-silica optical fiber pressure sensor with an ultrathin uniform diaphragm[J]. Optics Express, 2010, 18(9): 9006-9014. DOI:10.1364/OE.18.009006
39 Webb D J. An ocean model code for array processor computers[J]. Computers & Geosciences, 1996, 22(5): 569-578. DOI:10.1016/0098-3004(95)00133-6
40 Takahashi N, Yoshimura K, Takahashi S, et al. Development of an optical fiber hydrophone with fiber Bragg grating[J]. Ultrasonics, 2000, 38(1-8): 581-585. DOI:10.1016/S0041-624X(99)00105-5
41 Guan B O, Tam H Y, Lau S T, et al. Ultrasonic hydrophone based on distributed Bragg reflector fiber laser[J]. IEEE Photonics Technology Letters, 2005, 17(1): 169-171. DOI:10.1109/LPT.2004.838141
42 Wu Q, Okabe Y. High-sensitivity ultrasonic phase-shifted fiber Bragg grating balanced sensing system[J]. Optics Express, 2012, 20(27): 28353-28362. DOI:10.1364/OE.20.028353
43 Tosi D, Olivero M, Perrone G. Optical microphone with fiber Bragg grating and signal processing techniques[J]. Proceedings of SPIE, 2008, 7098: 70981E. DOI:10.1117/12.803184
44 Nawa Y, Tsuda N, Yamada J. Small vibration sensor using self-coupling effect of semiconductor laser[J]. Review of Laser Engineering, 2008, 37(8): 619-623. DOI:10.2184/lsj.37.619
45 Mizushima D, Yoshimatsu T, Goshima K, et al. Sound detection by laser microphone using self-coupling effect of semiconductor laser[J]. IEEJ Transactions on Electronics, Information and Systems, 2016, 136(7): 1021-1026. DOI:10.1541/ieejeiss.136.1021
48 Ciddor P E. Refractive index of air: new equations for the visible and near infrared[J]. Applied Optics, 1996, 35(9): 1566-1573. DOI:10.1364/AO.35.001566
49 Xarion Laser Acoustics. Membrane-free optical microphones[EB/OL]. (2017) http://xarion.com/products.
Keywords:
Funds:
National Natural Science Found of China (61379013), National Key R & D Plan (2017YFB1103002) and Sichuan Science and Technology Project (2016GZ0002)
Export Citations as:
For
Get Citation:
Gao Chunming, Nie Feng, Zhang Ping, et al. Optical fiber acoustic sensors[J]. Opto-Electronic Engineering, 2018, 45(9): 180050.