Xie Kai, Tan Tao, Mu Boxin, et al. Study on fiber Bragg grating displacement sensor with angle steel structure[J]. Opto-Electronic Engineering, 2018, 45(9): 180106. doi: 10.12086/oee.2018.180106
Citation: Xie Kai, Tan Tao, Mu Boxin, et al. Study on fiber Bragg grating displacement sensor with angle steel structure[J]. Opto-Electronic Engineering, 2018, 45(9): 180106. doi: 10.12086/oee.2018.180106

Study on fiber Bragg grating displacement sensor with angle steel structure

    Fund Project: Supported by State Grid Project (52170215000R), National Natural Science Foundation of China (61377096、61775045、61605030), and 111 Project (B13015)
More Information
  • In this paper, two fiber reinforced polymer/plastic (FRP) encapsulated fiber Bragg grating (FBG) sensors were installed on the two sides of the angle steel beam, which was used to measure the displacement and direction of the diagonal steel beam, so as to realize the health inspection of the angle steel structure. The sensors were respectively installed on the different positions of angle steel beam, and the relationship between displacement and strain transmission of angle steel beam was simulated by the finite element analysis. The optimum design of sensors installation were discussed and the experimental verification was carried out. The simulation and experimental results show that the sensor has the capacity to discriminate the direction and measure the size of one side of the angle steel beam displacement when installed in a reasonable position. To realize the health monitoring by using optical fiber sensors on the structures composed by angle steel, such as bridges, electric towers and cranes, and so on, a basic research was provided.
  • 加载中
  • [1] 张利伟, 张慧.钢架用于桥梁加固的探索与研究[J].建筑技术, 2010, 41(09): 818-820. doi: 10.3969/j.issn.1000-4726.2010.09.011

    CrossRef Google Scholar

    Zhang L W, Zhang H. Exploration and research on application of steel frame for bridge strengthening[J]. Architecture Technology, 2010, 41(09): 818-820. doi: 10.3969/j.issn.1000-4726.2010.09.011

    CrossRef Google Scholar

    [2] 郭勇, 沈建国, 应建国.输电塔组合角钢构件稳定性分析[J].钢结构, 2012, 27(1): 11-16. doi: 10.3969/j.issn.1007-9963.2012.01.003

    CrossRef Google Scholar

    Guo Y, Shen J G, Ying J G. Stability analysis on the multiple angle members of transmission towers[J]. Steel Construction, 2012, 27(1): 11-16. doi: 10.3969/j.issn.1007-9963.2012.01.003

    CrossRef Google Scholar

    [3] Roveri N, Carcaterra A, Sestieri A. Real-time monitoring of railway infrastructures using fibre Bragg grating sensors[J]. Mechanical Systems and Signal Processing, 2015, 60-61: 14-28. doi: 10.1016/j.ymssp.2015.01.003

    CrossRef Google Scholar

    [4] 安雷, 胡勇.船舶肋骨冷弯中旁弯的有限元模拟分析研究[J].船海工程, 2011, 40(3): 40-43. doi: 10.3963/j.issn.1671-7953.2011.03.012

    CrossRef Google Scholar

    An L, Hu Y. FE simulation and analysis of ship frames vertical-bending in cold-bending processing[J]. Ship & Ocean Engineering, 2011, 40(3): 40-43. doi: 10.3963/j.issn.1671-7953.2011.03.012

    CrossRef Google Scholar

    [5] 王妮, 陈宗平, 燕柳斌, 等.角钢桁架型钢混凝土梁纯扭试验及损伤分析[J].建筑结构, 2014, 44(9): 15-21. doi: 10.19701/j.jzjg.2014.09.003

    CrossRef Google Scholar

    Wang N, Chen Z P, Yan L B, et al. Pure torsional experiment and damage analysis of angle steel truss reinforced concrete beams[J]. Building Structure, 2014, 44(9): 15-21. doi: 10.19701/j.jzjg.2014.09.003

    CrossRef Google Scholar

    [6] 范银平, 何晓波, 张全刚, 等.高强度热轧船用角钢的研制与开发[J].河南冶金, 2010, 18(6): 12-13, 17. doi: 10.3969/j.issn.1006-3129.2010.06.004

    CrossRef Google Scholar

    Fan Y P, He X B, Zhang Q G, et al. Research and development of higt strength shipbuilding hot rolled angle steel[J]. Henan Metallurgy, 2010, 18(6): 12-13, 17. doi: 10.3969/j.issn.1006-3129.2010.06.004

    CrossRef Google Scholar

    [7] 缪红燕, 徐鸿, 王楠, 等.大型组合管式反应塔的应力分析(一)——有限元应力分析模型[J].压力容器, 2003, 20(5): 26-28, 33. doi: 10.3969/j.issn.1001-4837.2003.05.007

    CrossRef Google Scholar

    Miao H Y, Xu H, Wang N, et al. Stress analyse of the large combined tubular reactor (1)——finite element model for stress analysis[J]. Pressure Vessel Technology, 2003, 20(5): 26-28, 33. doi: 10.3969/j.issn.1001-4837.2003.05.007

    CrossRef Google Scholar

    [8] 杨慧, 周国强. JJ225/43-K型井架模型试验研究[J].石油矿场机械, 2011, 40(02): 47-50. doi: 10.3969/j.issn.1001-3482.2011.02.012

    CrossRef Google Scholar

    Yang H, Zhou G Q. Experimental Research of JJ225/43-K Drilling Derrick Model[J]. Oil Field Equipment, 2011, 40(02): 47-50. doi: 10.3969/j.issn.1001-3482.2011.02.012

    CrossRef Google Scholar

    [9] 赵庆斌. 送电铁塔单角钢受压极限承载力研究[D]. 成都: 西南交通大学, 2004: 9-19.

    Google Scholar

    Zhao Q B. Power transmission tower angli iron bar critical load of compressive member[D]. Chengdu: Southwest Jiaotong University, 2004: 9-19.http://cdmd.cnki.com.cn/Article/CDMD-10613-2004106617.htm

    Google Scholar

    [10] 徐国权, 熊代余.光纤光栅传感技术在工程中的应用[J].中国光学, 2013, 6(3): 306-317. doi: 10.3788/CO.20130603.0306

    CrossRef Google Scholar

    Xu G Q, Xiong D Y. Applications of fiber Bragg grating sensing technology in engineering[J]. Chinese Optics, 2013, 6(3): 306-317. doi: 10.3788/CO.20130603.0306

    CrossRef Google Scholar

    [11] 杜志泉, 倪锋, 肖发新.光纤传感技术的发展与应用[J].光电技术应用, 2014, 29(06): 7-12, 17. doi: 10.3969/j.issn.1673-1255.2014.06.002

    CrossRef Google Scholar

    Hou J F, Pei L, Li Z X, et al. Development and application of optical fiber sensing technology[J]. Electro-Optic Technology Application, 2014, 29(06): 7-12, 17. doi: 10.3969/j.issn.1673-1255.2014.06.002

    CrossRef Google Scholar

    [12] 张桂花. 表面黏贴式光纤光栅传感原理及其实验研究[D]. 西安: 西安科技大学, 2013: 15-39.

    Google Scholar

    Zhang G H. Study on principle of surface adhesive for fiber Bragg grating sensor monitoring and its experiments[D]. Xi'an: Xi'an University of Science and Technology, 2013: 15-39.http://cdmd.cnki.com.cn/Article/CDMD-10704-1014072269.htm

    Google Scholar

    [13] 詹亚歌, 蔡海文, 耿建新, 等.铝槽封装光纤光栅传感器的增敏特性研究[J].光子学报, 2004, 33(8): 952-955.

    Google Scholar

    Zhan Y G, Cai H W, Geng J X, et al. Study on aluminum groove encapsulating technique and sensing characteristics of FBG sensor[J]. Acta Photonica Sinica, 2004, 33(8): 952-955.

    Google Scholar

    [14] 甘望, 王华强, 谢忱, 等.光纤光栅管式封装工艺研究[J].光学仪器, 2016, 38(6): 544-548. doi: 10.3969/j.issn.1005-5630.2016.06.014

    CrossRef Google Scholar

    Gan W, Wang H Q, Xie C, et al. Steel capillary packaging technique for fiber Bragg grating sensor[J]. Optical Instruments, 2016, 38(6): 544-548. doi: 10.3969/j.issn.1005-5630.2016.06.014

    CrossRef Google Scholar

    [15] 叶列平, 冯鹏. FRP在工程结构中的应用与发展[J].土木工程学报, 2006, 39(3): 24-36. doi: 10.3321/j.issn:1000-131X.2006.03.004

    CrossRef Google Scholar

    Ye L P, Feng P. Applications and development of fiber-reinforced polymer in engineering structures[J]. China Civil Engineering Journal, 2006, 39(3): 24-36. doi: 10.3321/j.issn:1000-131X.2006.03.004

    CrossRef Google Scholar

    [16] 王言磊, 周智, 郝庆多, 等. FRP-FBG智能复合板的制作及其传感器特性研究[J].光电子·激光, 2007, 18(8): 900-902. doi: 10.3321/j.issn:1005-0086.2007.08.004

    CrossRef Google Scholar

    Wang Y L, Zhou Z, Hao Q D, et al. Research on fabrication technique and sensing properties of smart FRP-FBG composite laminates[J]. Journal of Optoelectronics·Laser, 2007, 18(8): 900-902. doi: 10.3321/j.issn:1005-0086.2007.08.004

    CrossRef Google Scholar

    [17] 张志春, 王川, 周智, 等. FRP筋拉挤成型工艺过程的光纤光栅监测与结果分析[J].东南大学学报(自然科学版), 2005, 35(S1): 23-26. doi: 10.3321/j.issn:1001-0505.2005.z1.007

    CrossRef Google Scholar

    Zhang Z C, Wang C, Zhou Z, et al. FBG monitoring results analysis for fabrication processing of FRP bars[J]. Journal of Southeast University (Natural Science Edition), 2005, 35(S1): 23-26. doi: 10.3321/j.issn:1001-0505.2005.z1.007

    CrossRef Google Scholar

    [18] Pramanik A, Basak A K, Dong Y, et al. Joining of carbon fibre reinforced polymer (CFRP) composites and aluminium alloys - a review[J]. Composites Part A: Applied Science and Manufacturing, 2017, 101: 1-29. doi: 10.1016/j.compositesa.2017.06.007

    CrossRef Google Scholar

  • Overview: In this paper, two fiber reinforced polymer/plastic (FRP) encapsulated fiber Bragg grating (FBG) sensors are installed on the two sides of the angle steel beam, which are used to measure the displacement and direction of the diagonal steel beam, so as to realize the health inspection of the angle steel structure. Compared with the traditional angle sensors, fiber Bragg grating is chosen as the sensor in this paper for its excellent characteristics of small volume, light weight, anti-electromagnetic interference, good electrical insulation and stable performance in harsh environment. The FBG is protected by FRP encapsulation to ensure that the sensor can work steadily in the severe working environment of the angle steel. Besides, according to the shape of the angle steel beam, the sensor installation fixture is designed to facilitate changing the installation position of the sensor on the angle steel beam. The influence of the installation of the sensor and the sensor fixture on the angle steel beam is analyzed by the finite element method. It is found that the fixture installation has no effect on the strain distribution on the surface of the angle steel beam, Based on these, the transfer relationship between sensor strain and displacement of angle beam are carefully analyzed on the different sensor installation positions of the angle beam. The sensitivity and errors of sensor are analyzed at each side of position 0, 1, 2 and gets the result that the sensor can achieve maximum sensitivity and minimum errors when being installed at position 2 on any surfaces or at any installation positions on surface 3 or 4. Finally, sensor mounted on surface 3 is chosen for experimental verification. The experimental results are in agreement with the simulation results. At the same time, it can be seen that the displacement and direction of the diagonal steel beams can be measured by the sensor installed at the position 2 on the surface 3. In this paper, optimization design of the installation positions of the FRP fiber Bragg grating sensor on the different surfaces of the angle steel beam are discussed and the experimental verification is carried out the experimental. To achieve the health monitoring by using optical fiber sensors on the structures composed by angle steel, such as bridges, electric towers and cranes, and so on, a basic research is provided.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(2)

Article Metrics

Article views(8766) PDF downloads(3533) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint