45°倾斜光纤光栅波长可调谐调Q光纤激光器

胡啸林, 闫志君, 黄千千, 等. 45°倾斜光纤光栅波长可调谐调Q光纤激光器[J]. 光电工程, 2018, 45(10): 170741. doi: 10.12086/oee.2018.170741
引用本文: 胡啸林, 闫志君, 黄千千, 等. 45°倾斜光纤光栅波长可调谐调Q光纤激光器[J]. 光电工程, 2018, 45(10): 170741. doi: 10.12086/oee.2018.170741
Hu Xiaolin, Yan Zhijun, Huang Qianqian, et al. Wavelength-tunable Q-switched fiber laser based on a 45° tilted fiber grating[J]. Opto-Electronic Engineering, 2018, 45(10): 170741. doi: 10.12086/oee.2018.170741
Citation: Hu Xiaolin, Yan Zhijun, Huang Qianqian, et al. Wavelength-tunable Q-switched fiber laser based on a 45° tilted fiber grating[J]. Opto-Electronic Engineering, 2018, 45(10): 170741. doi: 10.12086/oee.2018.170741

45°倾斜光纤光栅波长可调谐调Q光纤激光器

  • 基金项目:
    国家自然科学基金青年项目基金资助项目(61605107, 61505244);上海市青年东方学者项目(QD2015027);国家青年千人项目
详细信息
    作者简介:
    通讯作者: 牟成博(1982-),男,博士,教授,博士生导师,主要从事超短脉冲的偏振动力学、新型超快光纤激光器、纳米光子学、新型光纤器件等相关方面的研究。E-mail:mouc1@shu.edu.cn
  • 中图分类号: O436.3; TN253

Wavelength-tunable Q-switched fiber laser based on a 45° tilted fiber grating

  • Fund Project: Supported by National Natural Science Foundation of China (NSFC) (61605107, 61505244), Young Eastern Scholar Program at Shanghai Institutions of Higher Learning (QD2015027), and "Young 1000 Talent Plan" Program of China
More Information
  • 本文提出了一种基于45°倾斜光纤光栅与带通滤波器的连续可调谐全光纤调Q掺铒激光器,45°倾斜光纤光栅与其两侧的偏振控制器可以实现非线性偏振旋转效应,调Q的产生则是因为非线性偏振旋转效应使环形腔中的激光产生强度依赖损耗从而导致脉冲压缩。在泵浦功率为655 mW时,通过调节具有中心波长选择作用的带通滤波器,调Q状态下可以实现光谱在1512 nm~1552 nm范围内的连续可调,平均输出功率从0.282 mW逐渐增加到4.884 mW,脉冲重复频率从23.7 kHz逐渐增加到119.0 kHz。据我们所知,这是目前为止基于非线性偏振旋转效应与光谱带通滤波器实现的可调谐调Q的光纤激光器中连续可调谐波长范围最宽的。

  • Overview: Wavelength tunable Q-switched fiber lasers have important applications in the fields of communication, medicine, ranging finding and laser processing. Generally speaking, Q-switched fiber lasers can be divided into two types using either active or passive system. There are several kinds of saturable absorber can be used to realize passively Q-switched in fiber lasers, including semiconductor saturable absorber mirrors (SESAMs), transition metal-doped crystals and single-wall carbon nanotubes (SWNTs). However, the method of using nonlinear polarization rotation (NPR) technology which is an artificial saturable absorber to realize passively Q-switched can not only maintain all-fiber structure of fiber lasers, but also change the width of Q-switched pulses by adjusting the states of polarization controllers. By regulating commercial bandpass filter, the central wavelength of the Q-switched pulses can be adjusted continuously in a larger range.

    In this paper, a continuously tunable Q-switched all-fiber Er-doped laser based on a 45°-tilted fiber grating and tunable bandpass filter is demonstrated. The 45°-tilted fiber grating is used to achieve the nonlinear polarization rotation (NPR) along with two polarization controllers (PCs). In this experiment, the fiber grating is equivalent to an ideal in-fiber polarizer because it has strong polarization-dependent loss (PDL), then the Q-switched pulses can be easily observed by properly adjusting the polarization controllers. Under the pump power of 655 mW, stable Q-switched pulses with central wavelength of 1548 nm, average output power of 4.45 mW, repetition rate of 105 kHz, and signal to noise ratio (SNR) of 39.89 dB are obtained. Furthermore, the Q-switched optical spectrum can be continuously tuned from 1512 nm to 1552 nm by simply rotating the tunable bandpass filter with 655 mW pump power. As far as we know, this is the widest tunable range of tunable Q-switched fiber Lasers based on nonlinear polarization rotation effect and tunable bandpass filter.

  • 加载中
  • 图 1  光谱范围在1525 nm~1608 nm时45°倾斜光纤光栅的损耗特性。(a)插入损耗;(b)偏振相关损耗响应

    Figure 1.  Measured insertion loss of the 45° TFG from 1525 nm to 1608 nm. (a) Insertion loss; (b) PDL response

    图 2  可调谐带通滤波器的光谱特性。(a) 1512 nm~1552 nm;(b) 1548 nm

    Figure 2.  Spectral characteristics of tunable bandpass filter. (a) 1512 nm~1552 nm; (b) 1548 nm

    图 3  45°倾斜光纤光栅波长可调谐调Q光纤激光器示意图

    Figure 3.  Schematic diagram of the wavelength-tunable Q-switched fiber laser based on a 45° tilted fiber grating

    图 4  泵浦功率在655 mW下激光器的输出特性。(a)光谱漂移;(b)光谱;(c)脉冲序列;(d)单脉冲;(e)频率范围为200 kHz的频谱图,插图是频率范围为500 kHz的频谱图;(f)输出功率和重复频率与泵浦功率的关系

    Figure 4.  Measured characteristics of Q-switched fiber laser under the pump power of 655 mW. (a) Optical spectrum shift; (b) Optical spectrum; (c) Pulse trains; (d) Profile; (e) RF spectrum with a 200 kHz span, inset presents the RF spectrum with a 500 kHz span; (f) The laser output power and repetition rate variations along with elevating pump power

  • [1]

    Mears R J, Reekie L, Poole S B, et al. Low-threshold tunable CW and Q-switched fibre laser operating at 1.55μm[J]. Electronics Letters, 1986, 22(3): 159-160. doi: 10.1049/el:19860111

    [2]

    Luo Z Q, Liu C, Huang Y Z, et al. Topological-insulator passively Q-switched double-clad fiber laser at 2μm wavelength[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 1-8. doi: 10.1109/JSTQE.2014.2305834

    [3]

    Wang L, Gao C Q, Gao M W, et al. A resonantly-pumped tunable Q-switched Ho: YAG ceramic laser with diffraction-limit beam quality[J]. Optics Express, 2014, 22(1): 254-261. doi: 10.1364/OE.22.000254

    [4]

    Sharma U, Kim C S, Kang J U, et al. Highly stable tunable dual-wavelength Q-switched fiber laser for DIAL applications[C]//Proceedings of 2004 Laser Applications to Chemical and Environmental Analysis, Annapolis, Maryland United States, 2004: 1277-1279.

    [5]

    Chernikov S V, Zhu Y, Taylor J R, et al. Supercontinuum self-Q-switched ytterbium fiber laser[J]. Optics Letters, 1997, 22(5): 298-300. doi: 10.1364/OL.22.000298

    [6]

    Dong B, Hao J Z, Hu J H, et al. Wide pulse-repetition-rate range tunable nanotube Q-switched low threshold erbium-doped fiber laser[J]. IEEE Photonics Technology Letters, 2010, 22(24): 1853-1855. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0220104914/

    [7]

    Pérez-Millán P, Cruz J L, Andrés M V. Active Q-switched distributed feedback erbium-doped fiber lasers[J]. Applied Physics Letters, 2005, 87(1): 011104. doi: 10.1063/1.1990252

    [8]

    Delgado-Pinar M, Díez A, Cruz J L, et al. Single-frequency active Q-switched distributed fiber laser using acoustic waves[J]. Applied Physics Letters, 2007, 90(17): 171110. doi: 10.1063/1.2732832

    [9]

    Keller U, Weingarten K J, Kartner F X, et al. Semiconductor saturable absorber mirrors (SESAM's) for femtosecond to nanosecond pulse generation in solid-state lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1996, 2(3): 435-453. doi: 10.1109/2944.571743

    [10]

    Li J F, Hudson D D, Liu Y, et al. Efficient 2.87 μm fiber laser passively switched using a semiconductor saturable absorber mirror[J]. Optics Letters, 2012, 37(18): 3747-3749. doi: 10.1364/OL.37.003747

    [11]

    Filippov V N, Starodumov A N, Kir'yanov A V. All-fiber passively Q-switched low-threshold erbium laser[J]. Optics Letters, 2001, 26(6): 343-345. doi: 10.1364/OL.26.000343

    [12]

    Laroche M, Chardon A M, Nilsson J, et al. Compact diode-pumped passively Q-switched tunable Er-Yb double-clad fiber laser[J]. Optics Letters, 2002, 27(22): 1980-1982. doi: 10.1364/OL.27.001980

    [13]

    Zhou D P, Wei L, Dong B, et al. Tunable passively Q-switched erbium-doped fiber laser with carbon nanotubes as a saturable absorber[J]. IEEE Photonics Technology Letters, 2010, 22(1): 9-11. doi: 10.1109/LPT.2009.2035325

    [14]

    Cao W J, Wang H Y, Luo A P, et al. Graphene-based, 50 nm wide-band tunable passively Q-switched fiber laser[J]. Laser Physics Letters, 2011, 9(1): 54-58. doi: 10.1002/lapl.201110085

    [15]

    Luo Z C, Liu J R, Wang H Y, et al. Wide-band tunable passively Q-switched all-fiber ring laser based on nonlinear polarization rotation technique[J]. Laser Physics, 2012, 22(1): 203-206. doi: 10.1134/S1054660X11230125

    [16]

    Wang T X, Yan Z J, Mou C B, et al. Stable nanosecond passively Q-switched all-fiber erbium-doped laser with a 45° tilted fiber grating[J]. Applied Optics, 2017, 56(12): 3583-3588. doi: 10.1364/AO.56.003583

    [17]

    Yan Z J, Mou C B, Zhou K M, et al. UV-inscription, polarization-dependant loss characteristics and applications of 45° tilted fiber gratings[J]. Journal of Lightwave Technology, 2011, 29(18): 2715-2724. doi: 10.1109/JLT.2011.2163196

    [18]

    Yan Z J, Mou C B, Wang H S, et al. All-fiber polarization interference filters based on 45°-tilted fiber gratings[J]. Optics Letters, 2012, 37(3): 353-355. doi: 10.1364/OL.37.000353

    [19]

    Zhou K M, Cheng X F, Yan Z J, et al. Optical Spectrum Analyzer using a 45° tilted fiber grating[C]//Proceedings of 2012 Advanced Photonics Congress, Colorado Springs, Colorado, United States, 2012: BW2E. 7.

    [20]

    Yan Z J, Mou C B, Sun Z Y, et al. Hybrid tilted fiber grating based refractive index and liquid level sensing system[J]. Optics Communications, 2015, 351: 144-148. doi: 10.1016/j.optcom.2015.04.038

    [21]

    Zhou K M, Simpson G, Chen X F, et al. High extinction ratio in-fiber polarizers based on 45° tilted fiber Bragg gratings[J]. Optics Letters, 2005, 30(11): 1285-1287. doi: 10.1364/OL.30.001285

    [22]

    Renaud C C, Selvas-Aguilar R J, Nilsson J, et al. Compact high-energy Q-switched cladding-pumped fiber laser with a tuning range over 40 nm[J]. IEEE Photonics Technology Letters, 1999, 11(8): 976-978. doi: 10.1109/68.775318

    [23]

    Fan Y X, Lu F Y, Hu S L, et al. Tunable high-peak-power, high-energy hybrid Q-switched double-clad fiber laser[J]. Optics Letters, 2004, 29(7): 724-726. doi: 10.1364/OL.29.000724

    [24]

    Popa D, Sun Z, Hasan T, et al. Graphene Q-switched, tunable fiber laser[J]. Applied Physics Letters, 2011, 98(7): 073106. doi: 10.1063/1.3552684

    [25]

    Chen Y, Zhao C J, Chen S Q, et al. Large energy, wavelength widely tunable, topological insulator Q-switched erbium-doped fiber laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2014, 20(5): 315-322. doi: 10.1109/JSTQE.2013.2295196

    [26]

    Huang Y Z, Luo Z Q, Li Y Y, et al. Widely-tunable, passively Q-switched erbium-doped fiber laser with few-layer MoS2 saturable absorber[J]. Optics Express, 2014, 22(21): 25258-25266. doi: 10.1364/OE.22.025258

    [27]

    Woodward R I, Kelleher E J R, Howe R C T, et al. Tunable Q-switched fiber laser based on saturable edge-state absorption in few-layer molybdenum disulfide (MoS2)[J]. Optics Express, 2014, 22(25): 31113-31122. doi: 10.1364/OE.22.031113

    [28]

    Mou C B, Zhou K M, Zhang L, et al. Characterization of 45°-tilted fiber grating and its polarization function in fiber ring laser[J]. Journal of the Optical Society of America B, 2009, 26(10): 1905-1911. doi: 10.1364/JOSAB.26.001905

    [29]

    Hönninger C, Paschotta R, Morier-Genoud F, et al.Q-switching stability limits of continuous-wave passive mode locking[J]. Journal of the Optical Society of America B, 1999, 16(1): 46-56. doi: 10.1364/JOSAB.16.000046

  • 加载中

(4)

计量
  • 文章访问数:  8480
  • PDF下载数:  3145
  • 施引文献:  0
出版历程
收稿日期:  2017-12-30
修回日期:  2018-02-02
刊出日期:  2018-10-01

目录

/

返回文章
返回