基于面阵CCD的高灵敏度微型光谱仪的设计与实现

徐丹阳, 杜春年. 基于面阵CCD的高灵敏度微型光谱仪的设计与实现[J]. 光电工程, 2018, 45(11): 180152. doi: 10.12086/oee.2018.180152
引用本文: 徐丹阳, 杜春年. 基于面阵CCD的高灵敏度微型光谱仪的设计与实现[J]. 光电工程, 2018, 45(11): 180152. doi: 10.12086/oee.2018.180152
Xu Danyang, Du Chunnian. Design and implementation of high sensitivity micro spectrometer based on area array CCD[J]. Opto-Electronic Engineering, 2018, 45(11): 180152. doi: 10.12086/oee.2018.180152
Citation: Xu Danyang, Du Chunnian. Design and implementation of high sensitivity micro spectrometer based on area array CCD[J]. Opto-Electronic Engineering, 2018, 45(11): 180152. doi: 10.12086/oee.2018.180152

基于面阵CCD的高灵敏度微型光谱仪的设计与实现

  • 基金项目:
    国家自然科学基金资助项目(11604295);浙江省自然科学基金资助项目(LQ17C100002)
详细信息
    作者简介:
  • 中图分类号: TH741

Design and implementation of high sensitivity micro spectrometer based on area array CCD

  • Fund Project: Supported by National Natural Science Foundation of China (11604295) and the Zhejiang Provincial Natural Science Foundation (LQ17C100002)
More Information
  • 面阵CCD具有灵敏度高、动态范围大的优点,适用于荧光测量、DNA测序、拉曼光谱分析和低光度检测,因此,研制基于面阵CCD的高灵敏度微型光纤光谱仪具有重要的实际价值。光学系统采用了优化后的交叉非对称型Czerny-Turner结构,并获得了1 nm的光学分辨率。结合DC-DC和LDO的设计方法,通过USB供电实现了6路电压输出的复杂电源系统设计; 通过Verilog HDL完成了CCD驱动时序设计; 采用Altera公司的EPM7064芯片实现了驱动信号输出。CCD输出的视频信号经双相关采样的高速16位AD芯片AD9826转换后存储在独立的静态RAM中,使得数据的采集和读取分离。所设计与实现的微型高灵敏度光纤光谱仪的灵敏度是通常基于线阵CCD的微型光谱仪的11倍左右,动态范围20000:1,信噪比达到500:1,很大程度地提高了微型光纤光谱仪的性能。

  • Overview: Spectrometer is animportant instrument for spectral detection. It is used to measure thecomposition and structure of a substance. It has the advantages of fastmeasuring speed, high accuracy and nondestructive measurement. Traditionalspectroscopic instruments, with their huge volume and high price, almost limitsuch instruments to the laboratory. In recent years, on the one hand, theurgent needs of biomedicine, science and technology agriculture and otherapplications require analytical instruments to develop in the direction ofminiaturization and intelligence. On the other hand, it is possible to make thespectrometer miniature, thanks to the development of microelectromechanical systems(MEMS) and the mass production of optical fiber devices, as well as theappearance of micro optoelectronic detection devices.

    Comparedto the linear array CCD, the area array CCD is more sensitive to the spectralresponse, which is very suitable for the applications of high quantumefficiency, such as pesticide residue detection, DNA detection, fluorescencedetection and Raman spectrum detection. Therefore, the development of highlysensitive micro fiber spectrometer can broaden the applications ofspectrometers, which is of great practical significance. At present, the technologyof micro spectrometer is mostly used at home and abroad. The first method is touse MEMS technology, two element optics and integrated optics. The secondmethod is to use the miniaturization of components and systems, which is themainstream method at present. The American Brimrose company and Jet Propulsionlaboratory developed a micro crystal NIR spectrometer based on acousto-optictunable filter (AOTF) with a new type of filter technology, with a resolutionof 0.0125 nm. Relevant research institutes in China include research institutessuch as Zhejiang University, Chongqing University and Changchun Institute ofOptical Precision Machinery and Physics, CAS.

    Theoptical resolution of 1 nm is obtained by using an optimized cross-asymmetricCzerny-Turner optical system structure. By combining the design methods ofDC-DC and LDO, the complex power system with 6 voltage outputs is realized throughUSB power supply. The CCD drive timing design is achieved by Verilog HDLlanguage and the signals are output through Altera's EPM7064 chip. After theCCD output video signal is converted by high-speed 16 bit AD chip AD9826, digitalsignals are stored in a separate static RAM, allowing data acquisition andreading to be separated. The sensitivity of the designed micro-high sensitivityspectrometer is 11 times of that of spectrometer based on linear array CCD. Furthermore,it has a dynamic range of 20000: 1 and a signal-to-noise ratio of 500: 1. Thiswork greatly improves the microfiber spectrometer performance.

  • 加载中
  • 图 1  微型光谱仪系统结构图

    Figure 1.  Structure of micro spectrometer system

    图 2  交叉切尔尼-特纳光学系统图

    Figure 2.  Diagram of crossed Czerny-Turner optical system

    图 3  Zemax模拟优化光路图

    Figure 3.  Simulated and optimized optical path using Zemax

    图 4  点列图。(a) 200 nm;(b) 550 nm;(c) 800 nm;(d) 900 nm

    Figure 4.  The spot diagrams. (a) 200 nm; (b) 550 nm; (c) 800 nm; (d) 900 nm

    图 5  HG-1汞-氩校准光源实测光谱图

    Figure 5.  Measured spectrogram of HG-1 mercury argon calibrated light source

    图 6  电源系统方案

    Figure 6.  Scheme of power system

    图 7  时序产生原理图

    Figure 7.  Timing generation schematic

    图 8  双相关采样原理图

    Figure 8.  Principle of correlated double sampler (CDS)

    图 9  时序仿真图

    Figure 9.  Diagram of CPLD timing simulation

    图 10  STM32控制流程图

    Figure 10.  Flow chart STM32 control

    图 11  卤钨灯光谱测试图

    Figure 11.  The spectrum of halogen lamp

    图 12  信噪比测试结果曲线。(a) USB2000+;(b)高灵敏度光谱仪

    Figure 12.  Curve of the signal to noise ratio test. (a) USB2000+; (b) High sensitivity micro spectrometer

    图 13  动态范围测试结果曲线。(a) USB2000+;(b)高灵敏度光谱仪

    Figure 13.  Curve of the dynamic range test. (a) USB2000+; (b) High sensitivity micro spectrometer

    表 1  系统电压分布表

    Table 1.  Table of system voltage distribution

    Parameter Reference range/V Design value/V Electrical equipment
    Leakage voltage of CCD output transistor 23~25 24 CCD
    CCD reset leakage voltage 11~13 12 CCD
    CCD output gate voltage 4~6 6 CCD
    CCD vertical drive time series high level 4~8 6 CCD
    CCD vertical drive timing low level -9~-7 -8 CCD
    CCD vertical drive time series high level 4~8 6 CCD
    CCD vertical drive timing low level -6~-4 -5 CCD
    Digital partial voltage 3.1~3.5 3.3 CPLD, STM32, et al
    下载: 导出CSV

    表 2  参数对比表

    Table 2.  Parameter comparison table

    Parameter USB2000+ Independent design
    Measurement wavelength/nm 350~1050 200~900
    Minimum integral time/ms 1 0.5
    SNR 250:1 500:1
    A/D conversion/bit 16 16
    CCD model ILX511B S11510
    CCD response range/nm 200~1100 200~1100
    Dynamic range 1300:1 20000:1
    下载: 导出CSV
  • [1]

    陈至坤, 王淑香, 王玉田, 等.光栅光谱仪光路结构的设计[J].应用光学, 2015, 36(5): 704-708. http://d.old.wanfangdata.com.cn/Periodical/yygx201505007

    Chen Z K, Wang S X, Wang Y T, et al. Design of grating spectrometer optical structure[J]. Journal of Applied Optics, 2015, 36(5): 704-708. http://d.old.wanfangdata.com.cn/Periodical/yygx201505007

    [2]

    童建平, 高建勋, 汪飞, 等.微型光谱仪中传感器S11639的非线性校正[J].光电工程, 2017, 44(11): 1101-1106. doi: 10.3969/j.issn.1003-501X.2017.11.010 http://www.oejournal.org/J/OEE/Article/Details/A171218000016/CN

    Tong J P, Gao J X, Wang F, et al. Nonlinear correction of the sensor S11639 in mini-spectrometer[J]. Opto-Electronic Engineering, 2017, 44(11): 1101-1106. doi: 10.3969/j.issn.1003-501X.2017.11.010 http://www.oejournal.org/J/OEE/Article/Details/A171218000016/CN

    [3]

    张文理, 田逢春, 赵贞贞, 等.空间外差光谱仪的干涉图校正[J].光电工程, 2017, 44(5): 488-497. doi: 10.3969/j.issn.1003-501X.2017.05.003 http://www.oejournal.org/J/OEE/Article/Details/A170830000012/CN

    Zhang W L, Tian F C, Zhao Z Z, et al. Interferogram correction of spatial heterodyne spectrometer[J]. Opto-Electronic Engineering, 2017, 44(5): 488-497. doi: 10.3969/j.issn.1003-501X.2017.05.003 http://www.oejournal.org/J/OEE/Article/Details/A170830000012/CN

    [4]

    夏果, 吴骕, 黄禅, 等.交叉非对称型Czerny-Turner光谱仪光学系统设计[J].光子学报, 2017, 46(4): 0422003. doi: 10.3788/gzxb20174604.0422003

    Xia G, Wu S, Huang C, et al. Design of crossed-asymmetric Czerny-Turner spectrometer optical system[J]. Acta Photonica Sinica, 2017, 46(4): 0422003. doi: 10.3788/gzxb20174604.0422003

    [5]

    陈谭轩, 杨怀栋, 陈科新, 等.宽光谱Czerny-Turner光谱仪中的彗差与分辨率[J].光谱学与光谱分析, 2010, 30(6): 1692-1696. doi: 10.3964/j.issn.1000-0593(2010)06-1692-05

    Chen T X, Yang H D, Chen K X, et al. Coma and resolution in wide spectral region Czerny-Turner spectrometer[J]. Spectroscopy and Spectral Analysis, 2010, 30(6): 1692-1696. doi: 10.3964/j.issn.1000-0593(2010)06-1692-05

    [6]

    谢锐, 裴东兴, 姚琴琴.高频信号动态测试中的信号完整性分析[J].仪器仪表学报, 2017, 38(3): 773-779. doi: 10.3969/j.issn.0254-3087.2017.03.033

    Xie R, Pei D X, Yao Q Q. Signal integrity analysis in high-frequency signal dynamic test[J]. Chinese Journal of Scientific Instrument, 2017, 38(3): 773-779. doi: 10.3969/j.issn.0254-3087.2017.03.033

    [7]

    冯帆, 段发阶, 伯恩, 等.一种小型中阶梯光栅光谱仪的光学设计[J].光电工程, 2014, 41(7): 20-25. doi: 10.3969/j.issn.1003-501X.2014.07.004

    Feng F, Duan F J, Bo E, et al. An optical design of small-size echelle spectrograph[J]. Opto-Electronic Engineering, 2014, 41(7): 20-25. doi: 10.3969/j.issn.1003-501X.2014.07.004

    [8]

    葛明锋, 亓洪兴, 王雨曦, 等.高分辨力成像光谱仪光谱定标研究[J].光电工程, 2015, 42(12): 14-19. doi: 10.3969/j.issn.1003-501X.2015.12.003

    Ge M F, Qi H X, Wang Y X, et al. Spectral calibration for the high spectral resolution imager[J]. Opto-Electronic Engineering, 2015, 42(12): 14-19. doi: 10.3969/j.issn.1003-501X.2015.12.003

    [9]

    黄元申, 苏仰庆, 盛斌, 等.高分辨力凹面光栅光谱仪的优化设计[J].光电工程, 2015, 42(12): 1-7. doi: 10.3969/j.issn.1003-501X.2015.12.001

    Huang Y S, Su Y Q, Sheng B, et al. Optimization design for the high resolution concave grating spectrometer[J]. Opto-Electronic Engineering, 2015, 42(12): 1-7. doi: 10.3969/j.issn.1003-501X.2015.12.001

    [10]

    Austin D R, Witting T, Walmsley I A. Broadband astigmatism-free Czerny-Turner imaging spectrometer using spherical mirrors[J]. Applied Optics, 2009, 48(19): 3846-3853. doi: 10.1364/AO.48.003846

    [11]

    张智辉, 田地, 杨义先.线阵CCD驱动电路设计的几种方法[J].仪表技术与传感器, 2004(6): 32-33, 52. doi: 10.3969/j.issn.1002-1841.2004.06.014

    Zhang Z H, Tian D, Yang Y X. Methods for design of linear CCD driving circuit[J]. Instrument Technique and Sensor, 2004(6): 32-33, 52. doi: 10.3969/j.issn.1002-1841.2004.06.014

    [12]

    秦莉, 董丽丽, 许文海, 等. CCD图像灰度与照度的转换标定方法[J].仪器仪表学报, 2015, 36(3): 639-644. doi: 10.19650/j.cnki.cjsi.2015.03.020

    Qin L, Dong L L, Xu W H, et al. Method for conversion calibration between CCD image gray value and illumination[J]. Chinese Journal of Scientific Instrument, 2015, 36(3): 639-644. doi: 10.19650/j.cnki.cjsi.2015.03.020

    [13]

    杨东东, 马红光, 徐东辉, 等.模拟电路参数变化检测最优混沌激励设计[J].仪器仪表学报, 2015, 36(4): 943-950. http://d.old.wanfangdata.com.cn/Periodical/yqyb201504028

    Yang D D, Ma H G, Xu D H, et al. Design of the optimal chaotic excitation for the parameter change detection of analog circuit[J]. Chinese Journal of Scientific Instrument, 2015, 36(4): 943-950. http://d.old.wanfangdata.com.cn/Periodical/yqyb201504028

    [14]

    Wang R M, Xu D, Jiang Y P, et al. Innovation application of area array CCD based on CPLD[J]. Proceedings of the SPIE, 2006, 6150: 615041. doi: 10.1117/12.676519

    [15]

    徐丹阳, 童建平, 高建勋, 等.光纤光谱仪光路模拟优化及波长标定[J].中国激光, 2015, 42(5): 0516003. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JJZZ201505047&dbname=CJFD&dbcode=CJFQ

    Xu D Y, Tong J P, Gao J X, et al. Fiber spectrometer optical simulation optimization and calibration[J]. Chinese Journal of Lasers, 2015, 42(5): 0516003. http://kns.cnki.net/KCMS/detail/detail.aspx?filename=JJZZ201505047&dbname=CJFD&dbcode=CJFQ

    [16]

    乔道鄂, 谷玉海, 徐小力.光栅光谱仪波长校准算法研究[J].光子学报, 2009, 38(9): 2283-2287. http://d.old.wanfangdata.com.cn/Periodical/gzxb200909027

    Qiao D E, Gu Y H, Xu X L. Wavelength calibration algorithm in grating spectrometer[J]. Acta Photonica Sinica, 2009, 38(9): 2283-2287. http://d.old.wanfangdata.com.cn/Periodical/gzxb200909027

    [17]

    陈少杰, 崔继承, 刘玉娟, 等.高分辨率中阶梯光栅光谱仪精确装调与标定[J].光谱学与光谱分析, 2012, 32(8): 2280-2285. doi: 10.3964/j.issn.1000-0593(2012)08-2280-06

    Chen S J, Cui J C, Liu Y J, et al. A method of precise adjustment and calibration for high-resolution echelle spectrograph[J]. Spectroscopy and Spectral Analysis, 2012, 32(8): 2280-2285. doi: 10.3964/j.issn.1000-0593(2012)08-2280-06

    [18]

    武旭华, 朱永田, 王磊.高分辨率阶梯光栅光谱仪的光学设计[J].光学 精密工程, 2003, 11(5): 442-447. 10.3321/j.issn:1004-924X.2003.05.004

    Wu X H, Zhu Y T, Wang L. Optical design of high resolution echelle spectrograph[J]. Optics and Precision Engineering, 2003, 11(5): 442-447. 10.3321/j.issn:1004-924X.2003.05.004

    [19]

    施建华, 伏思华, 谢文科.光栅光谱仪光谱响应误差校正[J].中国光学, 2014, 7(3): 483-490. http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201403017

    Shi J H, Fu S H, Xie W K. Error correction of spectral response characteristic of grating spectrometer[J]. Chinese Optics, 2014, 7(3): 483-490. http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz201403017

    [20]

    陈思, 柯福顺, 乐永康.光栅光谱仪的标定[J].物理实验, 2012, 32(3): 44-46. doi: 10.3969/j.issn.1005-4642.2012.03.012

    Chen S, Ke F S, Le Y K. Calibration of grating spectrometer[J]. Physics Experimentation, 2012, 32(3): 44-46. doi: 10.3969/j.issn.1005-4642.2012.03.012

  • 加载中

(13)

(2)

计量
  • 文章访问数:  11183
  • PDF下载数:  3442
  • 施引文献:  0
出版历程
收稿日期:  2018-03-27
修回日期:  2018-05-21
刊出日期:  2018-11-01

目录

/

返回文章
返回