水下湍流成像退化及优化恢复研究

谌雨章, 叶婷, 程超杰, 等. 水下湍流成像退化及优化恢复研究[J]. 光电工程, 2018, 45(12): 180233. doi: 10.12086/oee.2018.180233
引用本文: 谌雨章, 叶婷, 程超杰, 等. 水下湍流成像退化及优化恢复研究[J]. 光电工程, 2018, 45(12): 180233. doi: 10.12086/oee.2018.180233
Chen Yuzhang, Ye Ting, Cheng Chaojie, et al. Degradation and optimal recovery of underwater turbulent imaging[J]. Opto-Electronic Engineering, 2018, 45(12): 180233. doi: 10.12086/oee.2018.180233
Citation: Chen Yuzhang, Ye Ting, Cheng Chaojie, et al. Degradation and optimal recovery of underwater turbulent imaging[J]. Opto-Electronic Engineering, 2018, 45(12): 180233. doi: 10.12086/oee.2018.180233

水下湍流成像退化及优化恢复研究

  • 基金项目:
    湖北省教育厅科学技术研究计划青年人才项目(Q20171010)
详细信息
    作者简介:
    通讯作者: 叶婷(1994-), 女, 硕士研究生, 主要从事光电探测和图像处理方面的研究。E-mail:630197027@qq.com
  • 中图分类号: P733.3+1;TP391.41

Degradation and optimal recovery of underwater turbulent imaging

  • Fund Project: Supported by Research Project of Hubei Provincial Department of Education in China (Q20171010)
More Information
  • 为了全面且针对性地研究水下湍流成像的退化因素, 同时优化相应图像恢复算法, 搭建了一个可控湍流条件和重复使用的水下成像实验系统, 利用循环水泵控制实验水箱中湍流的强度, 气泡发生器制造微气泡, 图像传感器获取不同条件下的正弦条纹目标板的成像结果。研究了流速场、程辐射和流体介质对水下成像的影响, 结合图像复原和超分辨率重建技术, 比较了基于三种退化因素的调制传递函数(MTF)的差异和适用性。结果表明, 湍流流速场在低空间频率段造成MTF快速下降, 程辐射和流体介质则会导致高空间频率的调制对比度减小; 在水下湍流退化图像恢复中, 湍流流速场的MTF适合图像复原, 程辐射和流体介质的MTF适合图像重建。

  • Overview: At present, the related researches of underwater turbulence mainly include three major categories. The first category is the theoretical calculation based on turbulent structure function and scattering properties. The second category is to use the refractive index power spectra to construct experimental systems for indoor or outdoor experimental measurements and analysis. The third category is the simulation testing based on the PIV system. The existing three categories of research methods have different emphases, and few literatures compare them.

    In order to comprehensively and objectively study the degenerate factors of underwater turbulent imaging and optimize the corresponding image restoration algorithms, a reusable submarine imaging experiment system with a turbulent flow controllable condition is established. The circulating water pump is used to provide water force, and the water valve is used to control the turbulent flow field in the laboratory tank. The bubble generator is used to generate micro bubbles, and the bubbles is used as tracer particles. Image sensor is used to obtain the images of sinusoidal stripe target plates under different conditions. In order to reduce the experimental error, the experiment is conducted in a dark environment.

    Through indoor and outdoor field experiments, the effect of turbulent flow field, path radiation and fluid media on submarine imaging in turbulent flow are studied. The modulation transfer function (MTF) of the underwater turbulence degradation is correspondingly extracted and analyzed for the three models. The adaptation performance and advantages of the three MTFs are compared and analyzed by using several typical image processing algorithms in turbulent image restoration and super-resolution reconstruction. The objective evaluation criteria such as information capacity (IC), blur metric (BM), and gray mean grads (GMG) are used to compare the objective effect of image processing. The experimental results show that the turbulent flow field, path radiation and fluid media affect the underwater imaging process in turbulent water. The turbulent flow field is the main factor that causes the degradation of underwater imaging in the low spatial frequency. The path radiation and fluid media are the main causes of image degradation. In the restoration of the underwater turbulent degraded image, the MTF of the turbulent flow field is suitable for the image restoration, and the MTFs of the path radiation and turbulent fluid media are suitable for the image super-resolution reconstruction. Compared with other methods of the same class, the information capacity and the gray mean grads value are larger and the blur metric value is smaller.

  • 加载中
  • 图 1  实验系统立体结构图

    Figure 1.  Stereoscopic structure diagram of the experimental system

    图 2  水下湍流实验系统实物图

    Figure 2.  Physical map of underwater turbulence system

    图 3  实验系统的MTF对比

    Figure 3.  MTF comparison of experimental system

    图 4  基于不同MTF的盲复原图像。(a)不同空间频率的图像;(b)基于FMTF-motion的盲复原图像;(c)基于FMTF-path的盲复原图像;(d)基于FMTF-tur的盲复原图像

    Figure 4.  Blind restoration images of different MTFs. (a) Images of different spatial frequencies; (b) Blind restoration images of FMTF-motion; (c) Blind restoration images of FMTF-path; (d) Blind restoration images of FMTF-tur

    图 5  水下湍流条纹图像的复原结果。(a)水下湍流条纹图像;(b)基于FMTF-motion的LS方法;(c)基于FMTF-path的LS方法;(d)基于FMTF-tur的LS方法;(e)基于FMTF-motion的BD方法;(f)基于FMTF-path的BD方法;(g)基于FMTF-tur的BD方法

    Figure 5.  Reconstruction results of underwater turbulence stripe images. (a) Stripe image of underwater turbulence; (b) LS method of FMTF-motion; (c) LS method of FMTF-path; (d) LS method of FMTF-tur; (e) BD method of FMTF-motion; (f) BD method of FMTF-path; (g) BD method of FMTF-tur

    图 6  水下湍流条纹图像的超分辨率重建结果。(a)水下湍流条纹图像;(b)基于FMTF-motion的POCS方法;(c)基于FMTF-path的POCS方法;(d)基于FMTF-tur的POCS方法;(e)基于FMTF-motion的L1-TV方法;(f)基于FMTF-path的L1-TV方法;(g)基于FMTF-tur的L1-TV方法

    Figure 6.  Super resolution results of underwater turbulence stripe images. (a) Stripe image of underwater turbulence; (b) POCS method of FMTF-motion; (c) POCS method of FMTF-path; (d) POCS method of FMTF-tur; (e) L1-TV method of FMTF-motion; (f) L1-TV method of FMTF-path; (g) L1-TV method of FMTF-tur

    图 7  海洋鱼群图像的复原结果。(a)海洋鱼群图像;(b)基于FMTF-motion的LS方法;(c)基于FMTF-path的LS方法;(d)基于FMTF-tur的LS方法;(e)基于FMTF-motion的BD方法;(f)基于FMTF-path的BD方法;(g)基于FMTF-tur的BD方法

    Figure 7.  Reconstruction results of sea fishes images. (a) Sea fishes image; (b) LS method of FMTF-motion; (c) LS method of FMTF-path; (d) LS method of FMTF-tur; (e) BD method of FMTF-motion; (f) BD method of FMTF-path; (g) BD method of FMTF-tur

    图 8  海洋鱼群图像的超分辨率重建结果。(a)海洋鱼群图像;(b)基于FMTF-motion的POCS方法;(c)基于FMTF-path的POCS方法;(d)基于FMTF-tur的POCS方法;(e)基于FMTF-motion的L1-TV方法;(f)基于FMTF-path的L1-TV方法;(g)基于FMTF-tur的L1-TV方法

    Figure 8.  Super resolution results of sea fishes images. (a) Sea fishes image; (b) POCS method of FMTF-motion; (c) POCS method of FMTF-path; (d) POCS method of FMTF-tur; (e) L1-TV method of FMTF-motion; (f) L1-TV method of FMTF-path; (g) L1-TV method of FMTF-tur

    表 1  不同调制对比度盲复原图像的GMG

    Table 1.  GMG of the blind restoration images of different MTFs

    Spatial frequency of images/(lp/mm) FMTF-motion FMTF‐path FMTF‐tur
    2 11360881 1189020 1189020
    3 1615101 1102973 1102973
    5 1267690 1557851 1557851
    16 7047165 7226900 7226900
    下载: 导出CSV

    表 2  复原条纹图像的客观评价

    Table 2.  Objective evaluation of restored stripe images

    Item FMTF-motion+LS
    (Fig. 5(b))
    FMTF-path+LS
    (Fig. 5(c))
    FMTF-tur+LS
    (Fig. 5(d))
    FMTF-motion+BD
    (Fig. 5(e))
    FMTF-path+BD
    (Fig. 5(f))
    FMTF-tur+BD
    (Fig. 5(g))
    IC 6.6213 5.0278 6.4778 8.8601 6.8095 6.8095
    BM 0.1368 0.111 0.156 0.0612 0.4144 0.3245
    GMG 920613 249308 821285 5576436 2786888 2786888
    下载: 导出CSV

    表 3  超分辨率重建条纹图像的客观评价

    Table 3.  Objective evaluations of stripe images in super-resolution reconstruction

    Item FMTF-motion+
    POCS
    (Fig. 6(b))
    FMTF-path+
    POCS
    (Fig. 6(c))
    FMTF-tur+
    POCS
    (Fig. 6(d))
    FMTF-motion+
    L1-TV
    (Fig. 6(e))
    FMTF-path+
    L1-TV
    (Fig. 6(f))
    FMTF-tur+
    L1-TV
    (Fig. 6(g))
    IC 6.3721 9.6147 9.7786 7.4589 6.6690 9.1354
    BM 0.1111 0.0368 0.0113 0.1071 0.0886 0.0136
    GMG 1146400000 3400668600 62597149 1767000000 6601191 5136100000
    下载: 导出CSV

    表 4  复原鱼群图像的客观评价

    Table 4.  Objective evaluation of restored sea fish images

    Item FMTF-motion+LS
    (Fig. 7(b))
    FMTF-path+LS
    (Fig. 7(c))
    FMTF-tur+LS
    (Fig. 7(d))
    FMTF-motion+BD
    (Fig. 7(e))
    FMTF-path+BD
    (Fig. 7(f))
    FMTF-tur+BD
    (Fig. 7(g))
    IC 5.5455 0.6311 0.8561 6.6668 4.6567 4.6567
    BM 0.1152 0.1425 0.1111 0.0311 0.5755 0.5755
    GMG 170666 2642 3916 122802 1046691 1046691
    下载: 导出CSV

    表 5  超分辨率重建鱼群图像的客观评价

    Table 5.  Objective evaluations of sea fishes images in super-resolution reconstruction

    Item FMTF-motion+
    POCS
    (Fig. 8(b))
    FMTF-path+
    POCS
    (Fig. 8(c))
    FMTF-tur+
    POCS
    (Fig. 8(d))
    FMTF-motion+
    L1-TV
    (Fig. 8(e))
    FMTF-path+
    L1-TV
    (Fig. 8(f))
    FMTF-tur+
    L1-TV
    (Fig. 8(g))
    IC 4.9063 6.4578 6.5512 7.5888 5.3496 9.3000
    BM 0.2119 0.1730 0.0821 0.1091 0.0873 0.0241
    GMG 49262650 60496856 59643527 449843653 142110023 867582194
    下载: 导出CSV
  • [1]

    Gilbert G D, Honey R C. Optical turbulence in the sea[J]. Proceedings of SPIE, 1971, 24: 49-56. doi: 10.1117/12.953476

    [2]

    Hou W L, Lee Z, Weidemann A D. Why does the Secchi disk disappear? An imaging perspective[J]. Optics Express, 2007, 15(6): 2791-2802. doi: 10.1364/OE.15.002791

    [3]

    Hou W L, Gray D J, Weidemann A D, et al. Comparison and validation of point spread models for imaging in natural waters[J]. Optics Express, 2008, 16(13): 9958-9965. doi: 10.1364/OE.16.009958

    [4]

    Hou W L. A simple underwater imaging model[J]. Optics Letters, 2009, 34(17): 2688-2690. doi: 10.1364/OL.34.002688

    [5]

    Hou W L, Jarosz E, Woods S, et al. Impacts of underwater turbulence on acoustical and optical signals and their linkage[J]. Optics Express, 2013, 21(4): 4367-4375. doi: 10.1364/OE.21.004367

    [6]

    Hou W L, Woods S, Jarosz E, et al. Optical turbulence on underwater image degradation in natural environments[J]. Applied Optics, 2012, 51(14): 2678-2686. doi: 10.1364/AO.51.002678

    [7]

    Farwell N, Korotkova O. Intensity and coherence properties of light in oceanic turbulence[J]. Optics Communications, 2012, 285(6): 872-875. doi: 10.1016/j.optcom.2011.10.020

    [8]

    Farwell N H, Korotkova O. Multiple phase-screen simulation of oceanic beam propagation[J]. Proceedings of SPIE, 2014, 9224: 922416. doi: 10.1117/12.2062683

    [9]

    Nootz G, Hou W L, Dalgleish F R, et al. Determination of flow orientation of an optically active turbulent field by means of a single beam[J]. Optics Letters, 2013, 38(13): 2185-2187. doi: 10.1364/OL.38.002185

    [10]

    Nootz G, Jarosz E, Dalgleish F R, et al. Quantification of optical turbulence in the ocean and its effects on beam propagation[J]. Applied Optics, 2016, 55(31): 8813-8820. doi: 10.1364/AO.55.008813

    [11]

    Nootz G, Matt S, Kanaev A, et al. Experimental and numerical study of underwater beam propagation in a Rayleigh-Bénard turbulence tank[J]. Applied Optics, 2017, 56(22): 6065-6072. doi: 10.1364/AO.56.006065

    [12]

    Matt S, Hou W L, Woods S, et al. A novel platform to study the effect of small-scale turbulent density fluctuations on underwater imaging in the ocean[J]. Methods in Oceanography, 2014, 11: 39-58. doi: 10.1016/j.mio.2015.01.001

    [13]

    Matt S, Hou W L, Goode W, et al. Introducing SiTTE: a controlled laboratory setting to study the impact of turbulent fluctuations on light propagation in the underwater environment[J]. Optics Express, 2017, 25(5): 5662-5683. doi: 10.1364/OE.25.005662

    [14]

    孙立颖, 夏珉, 韩捷飞, 等.湍流环境中水下成像系统的调制传递函数研究[J].光学学报, 2016, 36(8): 0801002. http://www.cqvip.com/QK/95626X/201608/669987859.html

    Sun L Y, Xia M, Han J F, et al. Research of modulation transfer function of underwater imaging system in turbulent environment[J]. Acta Optica Sinica, 2016, 36(8): 0801002. http://www.cqvip.com/QK/95626X/201608/669987859.html

    [15]

    蒲欢, 季小玲.海洋湍流中光学成像相关问题研究[J].光学学报, 2016, 36(10): 1026014. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016123000052203

    Pu H, Ji X L. Problems of optical imaging in oceanic turbulence[J]. Acta Optica Sinica, 2016, 36(10): 1026014. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QKC20162016123000052203

    [16]

    王马华, 赵正敏, 王士湖, 等.基于改进湍流模型和偏振成像技术的水下退化图像复原方法[J].农业工程学报, 2013, 29(S1): 203-209. http://d.old.wanfangdata.com.cn/Periodical/nygcxb2013z1034

    Wang M H, Zhao Z M, Wang S H, et al. Restoring method for underwater degraded images based on improved turbulence model and polarization imaging[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(S1): 203-209. http://d.old.wanfangdata.com.cn/Periodical/nygcxb2013z1034

    [17]

    杨爱萍, 张莉云, 曲畅, 等.基于加权L1正则化的水下图像清晰化算法[J].电子与信息学报, 2017, 39(3): 626-633. http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201703017

    Yang A P, Zhang L Y, Qu C, et al. Underwater images visibility improving algorithm with weighted L1 regularization[J]. Journal of Electronics & Information Technology, 2017, 39(3): 626-633. http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201703017

    [18]

    杨爱萍, 曲畅, 王建, 等.基于水下成像模型的图像清晰化算法[J].电子与信息学报, 2018, 40(2): 298-305. http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201802006

    Yang A P, Qu C, Wang J, et al. Underwater image visibility restoration based on underwater imaging model[J]. Journal of Electronics & Information Technology, 2018, 40(2): 298-305. http://d.old.wanfangdata.com.cn/Periodical/dzkxxk201802006

    [19]

    靳晓娟, 邓志良.基于L1范数和正交梯度算子的超分辨率重建[J].应用光学, 2012, 33(2): 305-312. http://d.old.wanfangdata.com.cn/Periodical/yygx201202014

    Jin X J, Deng Z L. Super resolution reconstruction based on L1-norm and orthogonal gradient operator[J]. Journal of Applied Optics, 2012, 33(2): 305-312. http://d.old.wanfangdata.com.cn/Periodical/yygx201202014

    [20]

    Chen Y Z, Yang W L, Tan H Y, et al. Image enhancement for LD based imaging in turbid water[J]. Optik - International Journal for Light and Electron Optics, 2016, 127(2): 517-521. doi: 10.1016/j.ijleo.2015.10.161

  • 加载中

(8)

(5)

计量
  • 文章访问数:  7033
  • PDF下载数:  2720
  • 施引文献:  0
出版历程
收稿日期:  2018-04-30
修回日期:  2018-07-05
刊出日期:  2018-12-01

目录

/

返回文章
返回