大容量光存储的维度扩展

陈韦良, 张静宇. 大容量光存储的维度扩展[J]. 光电工程, 2019, 46(3): 180571. doi: 10.12086/oee.2019.180571
引用本文: 陈韦良, 张静宇. 大容量光存储的维度扩展[J]. 光电工程, 2019, 46(3): 180571. doi: 10.12086/oee.2019.180571
Chen Weiliang, Zhang Jingyu. Dimension expansion of high-capacity optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180571. doi: 10.12086/oee.2019.180571
Citation: Chen Weiliang, Zhang Jingyu. Dimension expansion of high-capacity optical data storage[J]. Opto-Electronic Engineering, 2019, 46(3): 180571. doi: 10.12086/oee.2019.180571

大容量光存储的维度扩展

  • 基金项目:
    国家自然科学重点基金项目(61432007)
详细信息
    作者简介:
    通讯作者: 张静宇(1989-),男,博士,研究员,主要从事超快激光加工、多维度光存储的研究。E-mail: jy_z@hust.edu.cn
  • 中图分类号: TP333;TB872

Dimension expansion of high-capacity optical data storage

  • Fund Project: Supported by Wuhan National Laboratory for Optoelectronics Director Fund (61432007)
More Information
  • 随着数字化时代的发展,人类正进入一个大数据纪元。然而海量产生的数据已很难被全部记录,据估算,现有的数据载体已不足以存储人类产生数据的一半,如果该现状得不到改善,那么大量数据将会被强制舍弃。但改善这样的现状面临着难题,阿贝衍射极限的存在制约了光存储单元的大小,这使得传统光存储的容量被激光波长和物镜的数值孔径所限制。这个难题可以通过引入多维复用技术替代性地解决,本文针对多维存储中材料三维空间、偏振、波长等复用技术,综述了维度扩展在光存储中的研究成果以及未来的发展趋势。其中,着重介绍了基于纳米光栅的五维度光存储的发展历史、当前现状及亟需解决的问题。

  • Overview: Human beings are entering a big data era, which has significantly boosted the current digital economy and society. According to an estimation by the International Data Corporation (IDC), the information generated and consumed is nearly doubled every two year. Human being have already generated data onto an amount of 35 ZB (1 ZB=1000 EB=1000, 000 PB=1000, 000, 000 TB=1000, 000, 000, 000 GB) globally in 2017 and in the year of 2020 the total amount will reach 44 ZB. However, all current data storage technologies and mediums can only store less than half of this amount, which means most of the data will be forcibly lost if without breakthrough in high-capacity storage technologies. The infrastructure of the current information technology and the sustainability of the current information economy has been constantly challenged by the thirst for more storage capacities as well as low energy consumption. These challenges set a fundamental obstacle to the longevity and sustainability of the current information technology. Known for its green features, optical data storage is regarded as an excellent candidate for long-term data archiving. However, Ernst Abbe set a fundamental barrier that limits the smallest feature size of a recording cell to approximately half of the wavelength, leading to a capacity of hundreds of Gigabytes per disc. This capacity limitation could be overcome by implementing multiplex technology. This technology enables the potential for storing more than one bit of data in a single memory cell. It can be applied to materials which exhibit sensitivity to not only the intensity but also other parameters of light like polarization, wavelength, and fluorescence. Limited by the material response, only five multiplex dimensions have been achieved in gold nanorods embedded polymer and fused silica glass. The nanogratings, generated by femtosecond laser writing in fused silica, behave as a uniaxial optical crystal with negative birefringence. The two parameters of birefringence, the slow axis orientation and retardation can be independently controlled by the polarization and intensity of the incident laser beam. Thanks to the effect of multi-photon excitation, 3D space of the medium volume can be simultaneously utilized by focusing femtosecond laser in fused silica. Such memory, encoding data in 5 dimensions, is capable of recording 360 TB data per disc for billions of years. It is believed that 5D optical data storage based on nanogratings in fused silica opens a new era of eternal data storage.

  • 加载中
  • 图 1  多维度光存储各复用维度的示意图

    Figure 1.  Schematic diagram of multiplexed dimensions in optical data storage

    图 2  基于双光子吸收的三维光存储的示意图。(a)双光束和光致变色介质[6];(b)单光束和熔融石英[33];(c)单光束和光致变色介质[37]

    Figure 2.  Schematic diagram of 3D optical storage system. (a) Two orthogonal recording beams in photochromic medium[6]; (b) Single beam scheme in fused silica[33]; (c) Single beam scheme in photochromic medium[37]

    图 3  (a) 银纳米颗粒的原子力显微镜图,其中左侧的银纳米颗粒为55 nm高,右侧为46 nm高;(b)银纳米颗粒高度和其对应LSPR波长最大值的实验结果,图中斜线为其实验结果的线性拟合[42]; (c) A、B、C三种不同摆放的银纳米颗粒的扫描电子显微镜图;(d)对应图 3(c)中三种不同情况下的散射光谱图[43]

    Figure 3.  (a) Atomic force microscopy profiles of silver nanoparticles; (b) Plot of LSPR peak maximum wavelength vs. nanoparticle height, the slope is the linear fitting of the experimental data[42]; (c) SEM images of specially designed silver nanoparticles; (d) The corresponding scattering spectra of silver nanoparticles in Fig. 3(c)[43]

    图 4  (a) 利用三种不同极化方向的偏振光在偶氮染料共聚物中完成的数据写入演示[19]; (b)利用双光子吸收,在偶氮染料中完成的数据写入、擦除及重写,其中字母I和J被写入后擦除,并在同一位置写入了字母F和E[45]; (c)含有金纳米棒的薄膜材料在不同波长和偏振光照射下,显示出不同的图案[46]

    Figure 4.  (a) Data writing in azo dye copolymer by irradiating three different linearly polarized light[19]; (b) Data writing, erasing, and rewriting in azo dye by two-photon absorption process[45]; (c) Microscope images of the gold-nanorod nanocomposite films irradiated by light with different wavelengths and polarizations[46]

    图 5  (a) 不同偏振态的飞秒激光聚焦到掺锗熔融石英内部时产生的各向异性散射[51]; (b)纳米光栅结构的扫描电子显微镜图[52];(c)纳米光栅的场发射枪扫描电子显微镜(FEG-SEM)图,可以看到形成的纳米多孔层状结构[53]; (d)纳米光栅表现出双折射特性的示意图,纳米光栅可以简化为周期排布的折射率不同(n1, n2),厚度不同(t1, t2)的层状结构[54]

    Figure 5.  (a) Anisotropic scatterings produced by focusing femtosecond laser of different polarizations inside the germanium doped fused silica[51]; (b) Scanning electron microscopy image of nanogratings structure[52]; (c) FEG-SEM image of nanogratings[53]; (d) Schematic diagram showing birefringence characteristics of nanogratings[54]

    图 6  (a) 基于纳米光栅的五维度光存储写入系统;(b)数据读取及解码示意图;(c)存入、读取、并解码后的文字信息[23]

    Figure 6.  (a) Five-dimensional optical data storage recording setup; (b) Schematic diagram of the data readout process; (c) Decoded text information [23]

    图 7  (a) 左侧和右侧分别为在熔融石英中,不同结构在明场显微镜和双折射显微镜观察下的图片,红色箭头代表偏振态[62]; (b)在纳米多孔玻璃中,不同能量和脉宽情况下产生的结构在双折射显微镜观察下的图片;(c)光程延迟值随激光能量和脉宽改变的关系图。其中激光脉冲数为6个,重频为200 kHz[63]

    Figure 7.  (a) Bright field and birefringence microscopic images of structures produced in fused silica by different burst energies and polarization directions, the red arrows indicate the polarization directions[62]; (b) Slow axis orientation images of the laser-induced birefringent spots in nano-porous glass; (c) The plot of retardance vs pulse energy. The number of pulses is 6 and pulse repetition is 200 kHz[63]

    表 1  传统光存储技术的参数

    Table 1.  Parameters of conventional optical data storage technologies

    CDDVD蓝光
    波长/nm780650405
    数值孔径0.450.60.85
    轨距/μm1.60.740.32
    单层容量/GB0.74.723.5
    最多层数126
    最大容量/GB0.78.5500
    下载: 导出CSV
  • [1]

    The digitization of the world from edge to core. Digest Version[EB/OL]. (2018-11). https://www.seagate.com/cn/zh/our-story/data-age-2025.

    [2]

    Delforge P. America's data centers consuming and wasting growing amounts of energy[EB/OL]. (2015-02-06). https://www.nrdc.org/resources/americas-data-centers-consuming-and-wasting-growing-amounts-energy.

    [3]

    Gantz J, Reinsel D. The digital universe in 2020: big data, bigger digital shadows, and biggest growth in the far east[EB/OL]. (2018-12). https://www.emc.com/leadership/digital-universe/2012iview/index.htm.

    [4]

    Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage[J]. Light: Science & Applications, 2014, 3(5): e177. http://www.nature.com/lsa/journal/v3/n5/abs/lsa201458a.html

    [5]

    Heanue J, Bashaw M, Hesselink L. Volume holographic storage and retrieval of digital data[J]. Science, 1994, 265(5173): 749-752. doi: 10.1126/science.265.5173.749

    [6]

    Parthenopoulos D A, Rentzepis P M. Three-dimensional optical storage memory[J]. Science, 1989, 245(4920): 843-845. doi: 10.1126/science.245.4920.843

    [7]

    Gan Z S, Cao Y Y, Evans R A, et al. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size[J]. Nature Communications, 2013, 4: 2061. doi: 10.1038/ncomms3061

    [8]

    顾华荣, 赵瑱, 曹良才, 等.用二值空间光调制器实现多灰阶全息存储[J].光学学报, 2010, 30(7): 2080-2083. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201007040

    Gu H R, Zhao Z, Cao L C, et al. Multi-gray-level holographic storage using a binary spatial light modulator[J]. Acta Optica Sinica, 2010, 30(7): 2080-2083. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201007040

    [9]

    赫明钊, 曹良才, 何庆声, 等.高性能光致聚合物材料与全息光存储[J].记录媒体技术, 2008(1): 60-64. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802402032

    Hao M Z, Cao L C, He Q S, et al. High performance photopolymer recording materials for holographic storage[J]. China Mediatech, 2008(1): 60-64 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK200802402032

    [10]

    王阳, 顾冬红, 干福熹.亚酞菁薄膜的光谱和光存储性质研究[J].光学学报, 2001, 21(8): 948-951. doi: 10.3321/j.issn:0253-2239.2001.08.012

    Wang Y, Gu D H, Gan F X, Spectral and optical recording properties of a novel subphthalocyanine thin film[J]. Acta Optica Sinica, 2001, 21(8): 948-951. doi: 10.3321/j.issn:0253-2239.2001.08.012

    [11]

    干福熹, 王阳.突破光学衍射极限, 发展纳米光学和光子学[J].光学学报, 2011, 31(9): 0900104. http://d.old.wanfangdata.com.cn/Periodical/wl201209005

    Gan F X, Wang Y. Breaking through the optical diffraction limits, developing the Nano-optics and photonics[J]. Acta Optica Sinica, 2011, 31(9): 0900104. http://d.old.wanfangdata.com.cn/Periodical/wl201209005

    [12]

    翟凤潇, 王阳, 吴谊群, 等.纳米光存储薄膜结构的光学性质[J].激光与光电子学进展, 2007, 44(12): 28-35. http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200712014

    Zhai F X, Wang Y, Wu Y Q, et al. Optical properties of super-resolution near-field structure for optical Nano-storage[J]. Laser & Optoelectronics Progress, 2007, 44(12): 28-35. http://d.old.wanfangdata.com.cn/Periodical/jgygdzxjz200712014

    [13]

    曹强, 严文瑞, 姚杰, 等.一种超大容量自动光盘库的设计与实现[J].红外与激光工程, 2016, 45(9): 28-35. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201609005

    Cao Q, Yan W R, Yao J, et al. Design and implementation of an ultra-large scale automatic optical disc library[J]. Infrared and Laser Engineering, 2016, 45(9): 28-35. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201609005

    [14]

    严文瑞, 曹强, 姚杰, 等.一种面向大容量光盘库的新型文件系统[J].计算机研究与发展, 2015, 52(S1): 1-8. http://d.old.wanfangdata.com.cn/Conference/9096360

    Yan W R, Cao Q, Yao J, et al. A novel file system for large-scale optical library[J]. Journal of Computer Research and Development, 2015, 52(S1): 1-8. http://d.old.wanfangdata.com.cn/Conference/9096360

    [15]

    唐毅, 裴京, 潘龙法, 等.一种新的多阶只读光存储方法的仿真分析和实验验证[J].光学学报, 2008, 28(7): 1353-1358. doi: 10.3321/j.issn:0253-2239.2008.07.026

    Tang Y, Pei J, Pan L F, et al. Simulation analysis and experimental validation of a new multi-level read-only optical recording method[J]. Acta Optica Sinica, 2008, 28(7): 1353-1358. doi: 10.3321/j.issn:0253-2239.2008.07.026

    [16]

    唐毅, 裴京, 潘龙法, 等.波形调制多阶光盘的自适应阶次检测[J].光学学报, 2010, 30(4): 1130-1134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201004041

    Tang Y, Pei J, Pan L F, et al. Adaptive level detection for multi-level optical disk using signal waveform modulation[J]. Acta Optica Sinica, 2010, 30(4): 1130-1134. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201004041

    [17]

    李建华, 刘金鹏, 林枭, 等.体全息存储研究现状及发展趋势[J].中国激光, 2017, 44(10): 1000001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201710001

    Li J H, Liu J P, Lin X, et al. Volume holographic data storage[J]. Chinese Journal of Lasers, 2017, 44(10): 1000001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201710001

    [18]

    Wikipedia Contributors. Blu-ray[EB/OL]. (2019-02). https://en.wikipedia.org/wiki/Blu-ray.

    [19]

    Alasfar S, Ishikawa M, Kawata Y, et al. Polarization-multiplexed optical memory with urethane-urea copolymers[J]. Applied Optics, 1999, 38(29): 6201-6204. doi: 10.1364/AO.38.006201

    [20]

    Ando E, Miyazaki J, Morimoto K, et al. J-aggregation of photochromic spiropyran in Langmuir-Blodgett films[J]. Thin Solid Films, 1985, 133(1-4): 21-28. doi: 10.1016/0040-6090(85)90421-3

    [21]

    Royon A, Bourhis K, Bellec M, et al. Silver clusters embedded in glass as a perennial high capacity optical recording medium[J]. Advanced Materials, 2010, 22(46): 5282-5286. doi: 10.1002/adma.201002413

    [22]

    Zijlstra P, Chon J W M, Gu M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods[J]. Nature, 2009, 459(7245): 410-413. doi: 10.1038/nature08053

    [23]

    Zhang J Y, Gecevičius M, Beresna M, et al. Seemingly unlimited lifetime data storage in nanostructured glass[J]. Physical Review Letters, 2014, 112(3): 033901. doi: 10.1103/PhysRevLett.112.033901

    [24]

    Zhou Z Q, Hua Y L, Liu X, et al. Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal[J]. Physical Review Letters, 2015, 115(7): 070502. doi: 10.1103/PhysRevLett.115.070502

    [25]

    Gu M, Li X P. The road to multi-dimensional bit-by-bit optical data storage[J]. Optics and Photonics News, 2010, 21(7): 28-33. doi: 10.1364/OPN.21.7.000028

    [26]

    Hirshberg Y. Reversible formation and eradication of colors by irradiation at low temperatures. A photochemical memory model[J]. Journal of the American Chemical Society, 1956, 78(10): 2304-2312. doi: 10.1021/ja01591a075

    [27]

    Strickler J H, Webb W W. Three-dimensional optical data storage in refractive media by two-photon point excitation[J]. Optics Letters, 1991, 16(22): 1780-1782. doi: 10.1364/OL.16.001780

    [28]

    Dvornikov A S, Rentzepis P M. Anthracene monomer-dimer photochemistry: High density 3D optical storage memory[J]. Research on Chemical Intermediates, 1996, 22(2): 115-128. doi: 10.1163/156856796X00566

    [29]

    Yokoyama Y, Yamane T, Kurita Y. Photochromism of a protonated 5-dimethylaminoindolylfulgide: A model of a non-destructive readout for a photon mode optical memory[J]. Journal of the Chemical Society, Chemical Communications, 1991(24): 1722-1724. doi: 10.1039/c39910001722

    [30]

    Day D, Gu M, Smallridge A. Use of two-photon excitation for erasable-rewritable three-dimensional bit optical data storage in a photorefractive polymer[J]. Optics Letters, 1999, 24(14): 948-950. doi: 10.1364/OL.24.000948

    [31]

    Cumpston B H, Ananthavel S P, Barlow S, et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication[J]. Nature, 1999, 398(6722): 51-54. doi: 10.1038/17989

    [32]

    Kawata Y, Ishitobi H, Kawata S. Use of two-photon absorption in a photorefractive crystal for three-dimensional optical memory[J]. Optics Letters, 1998, 23(10): 756-758. doi: 10.1364/OL.23.000756

    [33]

    Glezer E N, Milosavljevic M, Huang L, et al. Three-dimensional optical storage inside transparent materials[J]. Optics Letters, 1996, 21(24): 2023-2025. doi: 10.1364/OL.21.002023

    [34]

    Miura K, Qiu J R, Fujiwara S, et al. Three-dimensional optical memory with rewriteable and ultrahigh density using the valence-state change of samarium ions[J]. Applied Physics Letters, 2002, 80(13): 2263-2265. doi: 10.1063/1.1459769

    [35]

    Kallepalli D L N, Alshehri A M, Marquez D T, et al. Ultra-high density optical data storage in common transparent plastics[J]. Scientific Reports, 2016, 6: 26163. doi: 10.1038/srep26163

    [36]

    Dvornikov A S, Walker E P, Rentzepis P M. Two-photon three-dimensional optical storage memory[J]. The Journal of Physical Chemistry A, 2009, 113(49): 13633-13644. doi: 10.1021/jp905655z

    [37]

    Walker E, Rentzepis P M. Two-photon technology: A new dimension[J]. Nature Photonics, 2008, 2(7): 406-408. doi: 10.1038/nphoton.2008.121

    [38]

    Xu X H, Yu X, Wang T, et al. Rewritable LPL in Sm3+-doped borate glass with the assistance of defects induced by femtosecond laser[J]. Optical Materials Express, 2016, 6(2): 402-408. doi: 10.1364/OME.6.000402

    [39]

    Qiu J R, Miura K, Suzuki T, et al. Permanent photoreduction of Sm3+ to Sm2+ inside a sodium aluminoborate glass by an infrared femtosecond pulsed laser[J]. Applied Physics Letters, 1999, 74(1): 10. doi: 10.1063/1.123117

    [40]

    Riesen N, Pan X Z, Badek K, et al. Towards rewritable multilevel optical data storage in single nanocrystals[J]. Optics Express, 2018, 26(9): 12266-12276. doi: 10.1364/OE.26.012266

    [41]

    Hibino J, Moriyama K, Suzuki M A, et al. Aggregation control of photochromic spiropyrans in Langmuir-Blodgett films[J]. Thin Solid Films, 1992, 210-211: 562-564. doi: 10.1016/0040-6090(92)90342-9

    [42]

    Jensen T R, Malinsky M D, Haynes C L, et al. Nanosphere lithography: tunable localized surface plasmon resonance spectra of silver nanoparticles[J]. The Journal of Physical Chemistry B, 2000, 104(45): 10549-10556. doi: 10.1021/jp002435e

    [43]

    Ditlbacher H, Krenn J R, Lamprecht B, et al. Spectrally coded optical data storage by metal nanoparticles[J]. Optics Letters, 2000, 25(8): 563-565. doi: 10.1364/OL.25.000563

    [44]

    Pham H H, Gourevich I, Oh J K, et al. A multidye nanostructured material for optical data storage and security data encryption[J]. Advanced Materials, 2004, 16(6): 516-520. doi: 10.1002/(ISSN)1521-4095

    [45]

    Li X P, Chon J W M, Wu S H, et al. Rewritable polarization-encoded multilayer data storage in 2, 5-dimethyl-4-(p-nitrophenylazo)anisole doped polymer[J]. Optics Letters, 2007, 32(3): 277-279. doi: 10.1364/OL.32.000277

    [46]

    Niidome Y, Urakawa S, Kawahara M, et al. Dichroism of poly(vinylalcohol) films containing gold nanorods induced by polarized pulsed-laser irradiation[J]. Japanese Journal of Applied Physics, 2003, 42(4A): 1749-1750.

    [47]

    Li X P, Lan T H, Tien C H, et al. Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam[J]. Nature Communications, 2012, 3: 998. doi: 10.1038/ncomms2006

    [48]

    Zhang Q M, Xia Z L, Cheng Y B, et al. High-capacity optical long data memory based on enhanced Young's modulus in nanoplasmonic hybrid glass composites[J]. Nature Communications, 2018, 9: 1183. doi: 10.1038/s41467-018-03589-y

    [49]

    Dai Q F, Ouyang M, Yuan W G, et al. Encoding random hot spots of a volume gold nanorod assembly for ultralow energy memory[J]. Advanced Materials, 2017, 29(35): 1701918. doi: 10.1002/adma.201701918

    [50]

    Sudrie L, Franco M, Prade B, et al. Writing of permanent birefringent microlayers in bulk fused silica with femtosecond laser pulses[J]. Optics Communications, 1999, 171(4-6): 279-284. doi: 10.1016/S0030-4018(99)00562-3

    [51]

    Kazansky P G, Inouye H, Mitsuyu T, et al. Anomalous anisotropic light scattering in Ge-doped silica glass[J]. Physical Review Letters, 1999, 82(10): 2199-2202. doi: 10.1103/PhysRevLett.82.2199

    [52]

    Shimotsuma Y, Kazansky P G, Qiu J R, et al. Self-organized nanogratings in glass irradiated by ultrashort light pulses[J]. Physical Review Letters, 2003, 91(24): 247405. doi: 10.1103/PhysRevLett.91.247405

    [53]

    Lancry M, Poumellec B, Canning J, et al. Ultrafast nanoporous silica formation driven by femtosecond laser irradiation[J]. Laser & Photonics Reviews, 2013, 7(6): 953-962. doi: 10.1002/lpor.201300043

    [54]

    Bricchi E, Kazansky P G. Extraordinary stability of anisotropic femtosecond direct-written structures embedded in silica glass[J]. Applied Physics Letters, 2006, 88(11): 111119. doi: 10.1063/1.2185587

    [55]

    Shimotsuma Y, Sakakura M, Kazansky P G, et al. Ultrafast manipulation of self-assembled form birefringence in glass[J]. Advanced Materials, 2010, 22(36): 4039-4043. doi: 10.1002/adma.201000921

    [56]

    Taylor R S, Hnatovsky C, Simova E, et al. Femtosecond laser erasing and rewriting of self-organized planar nanocracks in fused silica glass[J]. Optics Letters, 2007, 32(19): 2888-2890. doi: 10.1364/OL.32.002888

    [57]

    Beresna M, Gecevičius M, Kazansky P G, et al. Exciton mediated self-organization in glass driven by ultrashort light pulses[J]. Applied Physics Letters, 2012, 101(5): 053120. doi: 10.1063/1.4742899

    [58]

    Hnatovsky C, Shvedov V G, Shostka N, et al. Polarization-dependent ablation of silicon using tightly focused femtosecond laser vortex pulses[J]. Optics Letters, 2012, 37(2): 226-228. doi: 10.1364/OL.37.000226

    [59]

    Zhang J, Čerkauskaitė A, Drevinskas R, et al. Eternal 5D data storage by ultrafast laser writing in glass[J]. Proceedings of SPIE, 2016, 9736: 97360U. doi: 10.1117/12.2220600

    [60]

    Patel A, Tikhonchuk V T, Zhang J Y, et al. Non-paraxial polarization spatio-temporal coupling in ultrafast laser material processing[J]. Laser & Photonics Reviews, 2017, 11(3): 1600290. doi: 10.1002/lpor.201600290

    [61]

    Richter S, Heinrich M, D ring S, et al. Nanogratings in fused silica: Formation, control, and applications[J]. Journal of Laser Applications, 2012, 24(4): 042008. doi: 10.2351/1.4718561

    [62]

    Okhrimchuk A, Fedotov S, Glebov I, et al. Single shot laser writing with sub-nanosecond and nanosecond bursts of femtosecond pulses[J]. Scientific Reports, 2017, 7: 16563. doi: 10.1038/s41598-017-16850-z

    [63]

    Lipatiev A S, Fedotov S S, Okhrimchuk A G, et al. Multilevel data writing in nanoporous glass by a few femtosecond laser pulses[J]. Applied Optics, 2018, 57(4): 978-982. doi: 10.1364/AO.57.000978

    [64]

    周谷成, 范艳艳, 肖义军. DNA存储技术的研究概述[J].生物学通报, 2018, 53(8): 10-12. doi: 10.3969/j.issn.0006-3193.2018.08.004

    [65]

    Wikipedia Contributors. 5D optical data storage[EB/OL]. (2019-02). https://en.wikipedia.org/wiki/5D_optical_data_storage.

  • 加载中

(7)

(1)

计量
  • 文章访问数:  9830
  • PDF下载数:  4362
  • 施引文献:  0
出版历程
收稿日期:  2018-11-06
修回日期:  2018-12-27
刊出日期:  2019-03-01

目录

/

返回文章
返回