New website getting online, testing
    • 摘要: 为了提高传统点对点单输入单输出(SISO)可见光系统的传输速率,提出了多输入多输出(MIMO)的可见光系统。考虑到接收端系统复杂度的问题,多输入单输出(MISO)可见光通信系统则更受关注。本文研究了基于脉冲幅度调制(PAM)的MISO可见光通信系统,并通过实验证明该系统在特定场景中的运用优势。此外,针对可见光通信系统中LED光源、功率放大器等关键器件存在非线性效应,本文基于两发一收的2×1 MISO可见光通信系统,设计了两路低阶PAM信号在光域叠加产生高阶PAM信号的新型的等概率编码映射方案,并通过RGB-LED的红灯完成净比特速率700 Mb/s的传输实验系统验证,证明了此方案在实际中的可行性及优越性。

       

      Abstract: To improve the data transmission rate of the conventional point-to-point single input single output (SISO) visible light communication system, a multiple input multiple output (MIMO) visible light communication system is proposed. Considering the complexity of the receiver system, multiple input single output (MISO) visible light communication systems have attracted attention. This paper studies the MISO visible light communication system based on pulse amplitude modulation (PAM), and experimentally proves the advantages of this system in specific scenes. In addition, there are non-linear effects for key devices such as LED light sources and power amplifiers in visible light communication systems. Based on 2×1 MISO visible light communication system, this paper reports a novel equal probability coding mapping scheme for high-order PAM signals with two low-order PAM signals superposition in the optical domain. The system verification is performed through a net data-rate of 700 Mb/s transmission experiment through a red chip of RGB-LED, which proves the feasibility and superiority of this scheme in practice.