基于优化DBSCAN算法的激光雷达障碍物检测

蔡怀宇, 陈延真, 卓励然, 等. 基于优化DBSCAN算法的激光雷达障碍物检测[J]. 光电工程, 2019, 46(7): 180514. doi: 10.12086/oee.2019.180514
引用本文: 蔡怀宇, 陈延真, 卓励然, 等. 基于优化DBSCAN算法的激光雷达障碍物检测[J]. 光电工程, 2019, 46(7): 180514. doi: 10.12086/oee.2019.180514
Cai Huaiyu, Chen Yanzhen, Zhuo Liran, et al. LiDAR object detection based on optimized DBSCAN algorithm[J]. Opto-Electronic Engineering, 2019, 46(7): 180514. doi: 10.12086/oee.2019.180514
Citation: Cai Huaiyu, Chen Yanzhen, Zhuo Liran, et al. LiDAR object detection based on optimized DBSCAN algorithm[J]. Opto-Electronic Engineering, 2019, 46(7): 180514. doi: 10.12086/oee.2019.180514

基于优化DBSCAN算法的激光雷达障碍物检测

  • 基金项目:
    天津市科技计划资助项目(17ZXRGGX00140)
详细信息
    作者简介:
    通讯作者: 陈延真(1993-),男,硕士研究生,主要从事光电传感器应用的研究。E-mail:cyz123@tju.edu.cn
  • 中图分类号: TP277

LiDAR object detection based on optimized DBSCAN algorithm

  • Fund Project: Supported by Tianjin Science and Technology Plan Fund (17ZXRGGX00140)
More Information
  • 在激光雷达障碍物检测中,由于数据密度分布不均匀,传统DBSCAN聚类算法无法同时对近距离和远距离目标实现良好聚类,容易导致漏检和误检。为了解决这个问题,改进了传统DBSCAN算法聚类邻域半径ε参数的选值方法,不同于传统DBSCAN算法在聚类过程中使用统一的聚类邻域半径,而是调整为根据目标距离变化而变化的自适应聚类邻域半径。首先根据激光雷达扫描线分布求出相邻两条扫描线的间距建立ε*列表,然后依据每个扫描点的坐标值在列表中查找出对应的列表值,最后通过线性插值法确定对应的邻域半径。福特数据集的实验结果表明,优化之后的DBSCAN算法无论是对近距离目标还是远距离目标,其聚类效果均得到明显改善。与传统算法相比,障碍物检测正检率提高了17.52%。

  • Overview: Obstacle detection is one of important research fields of intelligent vehicle environment perception technology. It is important for vehicles driving to detect the obstacles quickly and accurately. There are two main types of obstacle detection methods: based on visual sensors and based on LiDAR sensors. Since the latter method has the characteristics of no-susceptible to environmental impact, strong anti-interference, high ranging accuracy and etc, it is widely studied and applied in obstacle detection. Cluster analysis is one of the most commonly methods in LiDAR detection. Among them, DBSCAN algorithm is widely used because it can obtain clusters of arbitrary shape without knowing the number of classes in advance and can also identify noise points effectively. In order to detect obstacles quickly and accurately, this paper proposed an optimized DBSCAN algorithm which improves the adaptability under different distance by optimize the selection method of neighborhood radius. The procedure of obstacle detection in this paper includes four steps: road boundary detection, ROI region data extraction, ground data removal and optimized DBSCAN algorithm clustering. Firstly, use the characteristic that the structured road boundary point has obvious elevation mutation than the ground point, detect the local Z-value abrupt changing point and use the least square method to fit out the road boundary. Then, according to road boundary, extract the data of the inside area (the ROI area) of the road boundary. Next, fit the ground plane in ROI area and remove them from ROI. Finally, use optimized DBSCAN algorithm to handle the data in ROI after boundary detecting and removing. The Ford Campus dataset which is acquired by the University of Michigan and Ford Motor Company is used to test the performance of the optimized DBSCAN algorithm. The experiments were performed on a computer with 4 GB memory and 3 GHz clock frequency, and programmed on MATLAB. The experiment results show that the effect of the optimized DBSCAN algorithm is significantly improved for both short-range and long-range targets. Compared with the traditional DBSCAN algorithm, the positive detection rate of obstacle detection improves and the false detection rate reduced significantly. Since some false detections caused by road boundary detection error, we can improve the accuracy of boundary detection by multi-sensors fusion in the future. Considering the driving environment of the unmanned vehicle, multi-sensors fusion can be applied to the algorithm, and the robustness and stability of the algorithm will be further improved.

  • 加载中
  • 图 1  障碍物检测流程

    Figure 1.  Flow chart of obstacle detection

    图 2  激光雷达扫描线

    Figure 2.  LiDAR scan line

    图 3  道路边界检测结果

    Figure 3.  Road-boundary detection result

    图 4  ROI区域数据提取结果

    Figure 4.  Data extraction of ROI

    图 5  地面拟合结果

    Figure 5.  Ground fitting

    图 6  双距离障碍物检测实验。(a)双距离障碍物数据采集场景;(b)激光点云图;(c)传统DBSCAN算法聚类效果;(d)优化DBSCAN算法聚类效果

    Figure 6.  The experiment of double-distance obstacle detection. (a) Dataset scene of two distance obstacle; (b) LiDAR points cloud; (c) Traditional DBSCAN algorithm; (d) Optimized DBSCAN algorithm

    图 7  三距离障碍物检测实验。(a)数据采集场景;(b)传统DBSCAN聚类算法效果;(c)优化DBSCAN聚类效果

    Figure 7.  The experiment of three-distance obstacle detection. (a) Dataset scene; (b) Traditional DBSCAN algorithm; (c) Optimized DBSCAN algorithm

    图 8  多种距离障碍物检测实验。(a)数据采集场景;(b)传统DBSCAN聚类算法效果;(c)优化DBSCAN聚类效果

    Figure 8.  The experiment of multi-distance obstacle detection. (a) Dataset scene; (b) Traditional DBSCAN algorithm; (c) Optimized DBSCAN algorithm

    表 1  传统DBSCAN算法和优化DBSCAN算法性能对比

    Table 1.  Performance comparison of traditional and optimized DBSCAN algorithm

    连续帧数 300 500 800
    检测结果 正检 误检 漏检 正检 误检 漏检 正检 误检 漏检
    传统DBSCAN算法 209 27 87 346 41 139 539 69 253
    优化DBSCAN算法 253 42 13 438 59 21 695 97 41
    下载: 导出CSV
  • [1]

    Kostavelis I, Nalpantidis L, Gasteratos A. Supervised traversability learning for robot navigation[C]//Proceedings of the 12th Annual Conference on Towards Autonomous Robotic Systems, 2011: 289-298.

    [2]

    林川, 宋伟奇, 覃金飞.基于V-视差的障碍物检测改进方法[J].科学技术与工程, 2014, 14(1): 86-90. doi: 10.3969/j.issn.1671-1815.2014.01.018

    Lin C, Song W Q, Qin J F. Improved method of obstacle detection based on V-disparity[J]. Science Technology and Engineering, 2014, 14(1): 86-90. doi: 10.3969/j.issn.1671-1815.2014.01.018

    [3]

    Jazayeri A, Cai H Y, Tuceryan M, et al. Vehicle detection and tracking in car video based on motion model[J]. IEEE Transactions on Intelligent Transportation Systems, 2011, 12(2): 583-595. doi: 10.1109/TITS.2011.2113340

    [4]

    曾丽娜.车载视觉系统中障碍物检测与识别方法研究[D].南京: 南京航空航天大学, 2016.

    Zeng L N. Research on obstacle detection and identification for on-board vision systems[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.http://cdmd.cnki.com.cn/Article/CDMD-10287-1016926236.htm

    [5]

    万忠涛.基于激光雷达的道路与障碍检测研究[D].长沙: 国防科学技术大学, 2010.

    Wan Z T. Research on LADAR based road and obstacles detection[D]. Changsha: National University of Defense Technology, 2010.http://cdmd.cnki.com.cn/Article/CDMD-90002-1011279781.htm

    [6]

    Himmelsbach M, Hundelshausen F V, Wuensche H J. Fast segmentation of 3D point clouds for ground vehicles[C]//Proceedings of 2010 IEEE Intelligent Vehicles Symposium, 2010: 560-565.

    [7]

    Moras J, Cherfaoui V, Bonnifait P. Credibilist occupancy grids for vehicle perception in dynamic environments[C]//Proceedings of 2011 IEEE International Conference on Robotics and Automation, 2011: 84-89.

    [8]

    吴伟民, 黄焕坤.基于差分隐私保护的DP-DBScan聚类算法研究[J].计算机工程与科学, 2015, 37(4): 830-834. doi: 10.3969/j.issn.1007-130X.2015.04.033

    Wu W M, Huang H K. A DP-DBScan clustering algorithm based on differential privacy preserving[J]. Computer Engineering and Science, 2015, 37(4): 830-834. doi: 10.3969/j.issn.1007-130X.2015.04.033

    [9]

    Azim A, Aycard O. Layer-based supervised classification of moving objects in outdoor dynamic environment using 3D laser scanner[C]//Proceedings of 2014 IEEE Intelligent Vehicles Symposium, 2014: 1408-1414.

    [10]

    周水庚, 周傲英, 曹晶.基于数据分区的DBSCAN算法[J].计算机研究与发展, 2000, 37(10): 1153-1159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyjyfz200010001

    Zhou S G, Zhou A Y, Cao J. A data-partitioning-based DBSCAN algorithm[J]. Journal of Computer Research and Development, 2000, 37(10): 1153-1159. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jsjyjyfz200010001

    [11]

    孔栋, 孙亮, 王建强, 等.基于3D激光雷达点云的道路边界识别算法[J].广西大学学报(自然科学版), 2017, 42(3): 855-863. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdxxb201703006

    Kong D, Sun L, Wang J Q, et al. Road boundary identification algorithm based on 3D LIDAR point cloud[J]. Journal of Guangxi University (Natural Science Edition), 2017, 42(3): 855-863. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxdxxb201703006

    [12]

    关超华, 陈泳丹, 陈慧岩, 等.基于改进DBSCAN算法的激光雷达车辆探测方法[J].北京理工大学学报, 2010, 30(6): 732-736. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlgdxxb201006023

    Guan C H, Chen Y D, Chen H Y, et al. Improved DBSCAN clustering algorithm based vehicle detection using a vehicle-mounted laser scanner[J]. Journal of Beijing Institute of Technology, 2010, 30(6): 732-736. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bjlgdxxb201006023

    [13]

    于亚飞, 周爱武.一种改进的DBSCAN密度算法[J].计算机技术与发展, 2011, 21(2): 30-33, 38. doi: 10.3969/j.issn.1673-629X.2011.02.008

    Yu Y F, Zhou A W. An improved algorithm of DBSCAN[J]. Computer Technology and Development, 2011, 21(2): 30-33, 38. doi: 10.3969/j.issn.1673-629X.2011.02.008

    [14]

    Kaempchen N, Buehler M, Dietmayer K. Feature-level fusion for free-form object tracking using laserscanner and video[C]//Proceedings of the IEEE Proceedings. Intelligent Vehicles Symposium, 2005: 453-458.

    [15]

    Chavez-Garcia R O, Burlet J, Vu T D, et al. Frontal object perception using radar and mono-vision[C]//Proceedings of 2012 IEEE Intelligent Vehicles Symposium, 2012: 159-164.

    [16]

    Birant D, Kut A. ST-DBSCAN: an algorithm for clustering spatial-temporal data[J]. Data & Knowledge Engineering, 2007, 60(1): 208-221. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ028260317/

    [17]

    Guo C Z, Sato W, Han L, et al. Graph-based 2D road representation of 3D point clouds for intelligent vehicles[C]//Proceedings of 2011 IEEE Intelligent Vehicles Symposium, 2011: 715-721.

    [18]

    Barzohar M, Cooper D B. Automatic finding of main roads in aerial images by using geometric-stochastic models and estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(7): 707-721. doi: 10.1109/34.506793

    [19]

    胡顺玺.基于三维激光扫描仪的车辆前方行人检测研究[D].长春: 吉林大学, 2011.

    Hu S X. Study on the vehicle front pedestrian detection based on 3D laser scanner[D]. Changchun: Jilin University, 2011.http://cdmd.cnki.com.cn/Article/CDMD-10183-1011099654.htm

    [20]

    冯少荣, 肖文俊. DBSCAN聚类算法的研究与改进[J].中国矿业大学学报, 2008, 37(1): 105-111. doi: 10.3321/j.issn:1000-1964.2008.01.021

    Feng S R, Xiao W J. An Improved DBSCAN clustering algorithm[J]. Journal of China University of Mining & Technology, 2008, 37(1): 105-111. doi: 10.3321/j.issn:1000-1964.2008.01.021

    [21]

    Zhou J, Cheng L, Bischof W F. Online learning with novelty detection in human-guided road tracking[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12): 3967-3977. doi: 10.1109/TGRS.2007.900697

    [22]

    Yu Z W, Wang D X, You J, et al. Progressive subspace ensemble learning[J]. Pattern Recognition, 2016, 60: 692-705. doi: 10.1016/j.patcog.2016.06.017

    [23]

    李龙杰.基于四线激光雷达的道路信息提取技术研究[D].北京: 北京工业大学, 2016.

    Li L J. Research on technology of road information extraction based on four-layer laser radar[D]. Beijing: Beijing University of Technology, 2016.http://cdmd.cnki.com.cn/Article/CDMD-10005-1016785513.htm

    [24]

    于春和, 刘济林.越野环境下基于四线激光雷达的障碍检测[J].南京理工大学学报, 2006, 30(5): 618-621, 625. doi: 10.3969/j.issn.1005-9830.2006.05.019

    Yu C H, Liu J L. Obstacle detection based on a four-layer laser radar in cross-country[J]. Journal of Nanjing University of Science and Technology, 2006, 30(5): 618-621, 625. doi: 10.3969/j.issn.1005-9830.2006.05.019

  • 加载中

(8)

(1)

计量
  • 文章访问数:  20048
  • PDF下载数:  3715
  • 施引文献:  0
出版历程
收稿日期:  2018-10-08
修回日期:  2019-01-10
刊出日期:  2019-07-01

目录

/

返回文章
返回