3 μm波长Er:ZBLAN光纤激光器研究进展

张新, 舒世立, 佟存柱. 3 μm波长Er:ZBLAN光纤激光器研究进展[J]. 光电工程, 2019, 46(8): 190070. doi: 10.12086/oee.2019.190070
引用本文: 张新, 舒世立, 佟存柱. 3 μm波长Er:ZBLAN光纤激光器研究进展[J]. 光电工程, 2019, 46(8): 190070. doi: 10.12086/oee.2019.190070
Zhang Xin, Shu Shili, Tong Cunzhu. Research progress of Er:ZBLAN fiber lasers at the wavelength of 3 μm[J]. Opto-Electronic Engineering, 2019, 46(8): 190070. doi: 10.12086/oee.2019.190070
Citation: Zhang Xin, Shu Shili, Tong Cunzhu. Research progress of Er:ZBLAN fiber lasers at the wavelength of 3 μm[J]. Opto-Electronic Engineering, 2019, 46(8): 190070. doi: 10.12086/oee.2019.190070

3 μm波长Er:ZBLAN光纤激光器研究进展

  • 基金项目:
    国家自然科学基金重大项目资助(61790584)
详细信息
    作者简介:
    通讯作者: 舒世立(1986-),男,博士,副研究员,主要从事中红外激光器及合束的研究。E-mail:shushili@ciomp.ac.cn
  • 中图分类号: O436.3; TN248

Research progress of Er:ZBLAN fiber lasers at the wavelength of 3 μm

  • Fund Project: Supported by National Natural Science Foundation of China (61790584)
More Information
  • 波长在3 μm附近的中红外Er掺杂的氟化物(Er:ZBLAN)光纤激光器凭借其良好的光束质量、体积小、可盘绕、易于实现等优势广泛应用于工业、医疗、军事等领域。本文主要介绍了基于Er:ZBLAN光纤激光器的发展现状,讨论了它们在发展中遇到的技术难题,总结并展望了其未来的发展方向。针对目前研究现状,提出多级放大将会是进一步提升3 μm Er:ZBLAN光纤激光器单路激光功率的方法。为了突破单路激光的功率极限,将其与光纤合束技术融合将会成为未来的一个研究方向。

  • Overview: Laser emitting at the wavelength of 3 μm has great demand for a wide range of scientific and technological applications, including military, medicine and communication. The laser emitting at this special wavelength can be generated by using crystals, glass, semiconductors, and gases as gain media. Compared with these gain media, Er doped ZBLAN (Er:ZBLAN) fiber used as gain media for 3 μm laser has larger surface area and volume ratio, which is conductive to heat dissipation. Its special waveguide structure is also conductive to high beam quality. And it can be pumped by 976 nm diode. Therefore, the 976 nm pumped Er:ZBLAN fiber is a common method to realize laser emitting at 3 μm. In this paper, the recently research progress of 3 μm Er:ZBLAN fiber laser is reviewed from both continuous and pulsed directions. For CW 3 μm Er:ZBLAN fiber laser, spatial coupling and all-fiber structure are two main methods for power scaling. Spatial coupling is a common and easy to realize method, but the end face of Er:ZBLAN fiber is easily damaged due to thermal accumulation and deliquescence. However, all-fiber structure does not need to consider the damage of the end face caused by thermal accumulation and the coupling efficiency is higher than that of spatial coupling. It is reported that only the University of Laval has realized the all-fiber structure emitting at 3 μm based on fluoride fiber Bragg grating, and recently the power has been further increased to 41.6 W. The fluoride fiber Bragg grating is the key device for all-fiber structure to achieve this high power. So the research of fluoride fiber device is important for the development of Er:ZBLAN fiber laser. For pulsed 3 μm Er:ZBLAN fiber laser, Q-switched and mode-locked are two main methods to realize Er:ZBLAN fiber laser pulse emmiting. Active and passive Q-switched has been used to the accomplish the Q-switched Er:ZBLAN fiber laser. Compared to the passive Q-switched method, the active Q-switched can get higher peak power. In order to accomplish femtosecond 3 μm Er:ZBLAN fiber laser, the mode-locked method was also used, including nonlinear polarization evolution and saturable absorber.

    At present, the power of both CW and pulsed 3 μm Er:ZBLAN fiber laser still have a large room for improvement. The multi-stage pulse amplification can rise laser energy, especially for femtosecond 3 μm Er:ZBLAN fiber laser. In order to breakthough the power limit of single laser, the fiber combining will be the best choice to improve the power of CW and pulsed 3 μm Er:ZBLAN fiber laser.

  • 加载中
  • 图 1  Er离子能级图[18]。其中EUT1和ETU2分别是作用在4I13/24I11/2两个能级上的能级上转换

    Figure 1.  The energy-level scheme of Er [18]. EUT1 and ETU2 are energy-transfer upconversions at 4I13/2 and 4I11/2, respectively

    图 2  2 W可调谐激光器示意图[20]

    Figure 2.  The schematic of 2 W tunable laser[20]

    图 3  10 W中红外激光器结构示意图和功率曲线[23]。(a)结构示意图;(b)功率曲线

    Figure 3.  The structure diagram of 10 W mid-infrared laser and power curve[23]. (a) Schematic of mid-infrared laser; (b) Power curve of the mid-infrared laser

    图 4  液体冷却双端泵浦中红外激光结构示意图[25]

    Figure 4.  The structure diagram of liquid-cooled double-ended pump mid-infrared laser[25]

    图 5  光纤光栅作为反馈的Er:ZBLAN全光纤激光器[27]

    Figure 5.  Diagram of Er:ZBLAN all fiber laser with a FBG reflector[27]

    图 6  30 W全光纤结构的中红外激光器[28]

    Figure 6.  Structure diagram of 30 W all-fiber mid-infrared laser[28]

    图 7  机械调Q Er:ZBLAN光纤激光器[35]

    Figure 7.  The structure diagram of mechanical Q-switched Er:ZBLAN fiber laser[35]

    图 8  Er:ZBLAN光纤激光器的非线性偏振变化锁模[46]

    Figure 8.  Structure diagram of NPE mode locked Er:ZBLAN fiber laser[46]

    图 9  多层石墨烯作为可饱和吸收的Er:ZBLAN光纤激光器锁模结构示意图[50]

    Figure 9.  Diagram of mode locked Er:ZBLAN fiber laser using multi-layer grapheme as saturable absorber[50]

    表 1  近几年Er:ZBLAN光纤调Q激光器研究情况

    Table 1.  The research on Er:ZBLAN fiber Q-switched lasers in recent years

    波长/μm 主动/被动 调制装置 脉冲宽度/ns 平均功率/W 重复频率/kHz 脉冲能量/μJ 年,参考文献
    2.8 主动 AOM 90 12 120 100 2011, 文献[34]
    2.78 被动 石墨烯 2900 0.062 37 1.67 2013, 文献[39]
    2.8 被动 石墨烯 400 0.38 59 6.4 2013, 文献[40]
    2.8 被动 黑磷 1180 0.485 63 7.7 2015, 文献[41]
    2.795 被动 SESAM 315 1.01 146.3 6.9 2016, 文献[36]
    2.78 被动 Fe2+:ZnSe 742 0.822 102.94 7.98 2016, 文献[37]
    2.8 被动 Bi2Te3拓扑体 1300 0.856 92 9.3 2016, 文献[38]
    2.78 主动 机械调Q 127.3 1.3 10 130 2017, 文献[35]
    2.78 被动 Fe2+:ZnSe 430 0.873 160.82 5.43 2018, 文献[42]
    2.8 被动 Gold nanostar 536 0.454 125 3.6 2018, 文献[43]
    2.8 被动 MoS2 806 0.14 70 2 2019, 文献[44]
    下载: 导出CSV

    表 2  近几年Er:ZBLAN光纤锁模激光器研究情况

    Table 2.  The research on Er:ZBLAN fiber mode-locking lasers in recent years

    波长/μm 可饱和吸收体 脉冲能量/nJ 脉冲宽度/ps 平均功率/mW 峰值功率/kW 重复频率/MHz 年,参考文献
    2.8 NPE 0.8 0.207 44 3.5 55.2 2015, 文献[46]
    2.8 SESAM 44.3 25 1000 1.86 22.56 2015, 文献[48]
    2.8 黑鳞 25.5 42 613 0.608 24 2015, 文献[49]
    2.8 NPE 3.62 0.497 206 6.4 56.7 2015, 文献[47]
    2.8 石墨烯 0.7 42 18 0.017 25.4 2016, 文献[50]
    2.777 SESAM 7 6.4 200 1.1 28.9 2017, 文献[51]
    下载: 导出CSV
  • [1]

    潘其坤.中红外固体激光器研究进展[J].中国光学, 2015, 8(4): 557-566. doi: 10.3788/CO.20150804.0557

    Pan Q K. Progress of mid-infrared solid-state laser[J]. Chinese Journal of Optics, 2015, 8(4): 557-566. doi: 10.3788/CO.20150804.0557

    [2]

    孙骁, 韩隆, 王克强.直接抽运中红外固体激光器研究进展[J].激光与光电子学进展, 2015, 54(5): 050007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201705007

    Sun X, Han L, Wang K Q. Progress in directly pumping of mid-infrared solid-state lasers[J]. Laser & Optoelectronics Progress, 2015, 54(5): 050007. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201705007

    [3]

    汪中贤, 樊祥.红外制导导弹的发展及其关键技术[J].飞航导弹, 2009(10): 14-19. http://d.old.wanfangdata.com.cn/Periodical/fhdd200910008

    Wang Z X, Fan X. The development of infrared guided missiles and its key technologies[J]. Winged Missiles Journal, 2009(10): 14-19. http://d.old.wanfangdata.com.cn/Periodical/fhdd200910008

    [4]

    王瑞凤, 张彦朴, 许志艳.激光技术军事应用的现状及发展趋势[J].红外与激光工程, 2007, 36(S1): 576-579. doi: 10.3969/j.issn.1007-2276.2007.z1.163

    Wang R F, Zhang Y P, Xu Z Y. Present situation and developing trend of application of laser technique to military[J]. Infrared and Laser Engineering, 2007, 36(S1): 576-579. doi: 10.3969/j.issn.1007-2276.2007.z1.163

    [5]

    钟鸣, 任钢. 3~5μm中红外激光对抗武器系统[J].四川兵工学报, 2007, 28(1): 3-6. doi: 10.3969/j.issn.1006-0707.2007.01.002

    Zhong M, Ren G. 3~5μm medium infrared laser countermeasure weapon system[J]. Sichuan Ordnance Journal, 2007, 28(1): 3-6. doi: 10.3969/j.issn.1006-0707.2007.01.002

    [6]

    韩玺, 蒋洞微, 王国伟, 等.锑化物纳米结构的中红外激光器与探测器的新进展[J].中国基础科学, 2017, 19(6): 41-46. doi: 10.3969/j.issn.1009-2412.2017.06.008

    Han X, Jiang D W, Wang G W, et al. New Recent advances of mid-infrared lasers and detec-tors in antimonide-based nanostructures[J]. China Basic Science, 2017, 19(6): 41-46. doi: 10.3969/j.issn.1009-2412.2017.06.008

    [7]

    Zhu X S, Zhu G W, Wei C, et al. Pulsed fluoride fiber lasers at 3μm[Invited][J]. Journal of the Optical Society of America B, 2017, 34(3): A15-A28. doi: 10.1364/JOSAB.34.000A15

    [8]

    谭改娟, 谢冀江, 张来明, 等.中波红外激光技术最新进展[J].中国光学, 2013, 6(4): 501-512. doi: 10.3788/CO.20130604.0501

    Tan G J, Xie J J, Zhang L M, et al. Recent progress in mid-infrared laser technology[J]. Chinese Journal of Optics, 2013, 6(4): 501-512. doi: 10.3788/CO.20130604.0501

    [9]

    Robinson M, Devor D P. Thermal switching of laser emission of Er3+ at 2.69 μ and Tm3+ at 1.86 μ in mixed crystals of CaF2:ErF3:TmF3[J]. Applied Physics Letters, 1967, 10(5): 167-170. doi: 10.1063/1.1754895

    [10]

    Wang L, Huang H T, Shen D Y, et al. Room temperature continuous-wave laser performance of LD pumped Er:Lu2O3 and Er:Y2O3 ceramic at 2.7 μm[J]. Optics Express, 2014, 22(16): 19495-19503. doi: 10.1364/OE.22.019495

    [11]

    Zhu X S, Jain R. Numerical analysis and experimental results of high-power Er/Pr:ZBLAN 2.7 μm fiber lasers with different pumping designs[J]. Applied Optics, 2006, 45(27): 7118-7125. doi: 10.1364/AO.45.007118

    [12]

    Gmachl C, Sivco D L, Colombelli R, et al. Ultra-broadband semiconductor laser[J]. Nature, 2002, 415(6874): 883-887. doi: 10.1038/415883a

    [13]

    Beck M, Hofstetter D, Aellen T, et al. Continuous wave operation of a mid-infrared semiconductor laser at room temperature[J]. Science, 2002, 295(5553): 301-305. doi: 10.1126/science.1066408

    [14]

    Brida D, Marangoni M, Manzoni C, et al. Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier[J]. Optics Letters, 2008, 33(24): 2901-2903. doi: 10.1364/OL.33.002901

    [15]

    Chalus O, Bates P K, Smolarski M, et al. Mid-IR short-pulse OPCPA with micro-Joule energy at 100kHz[J]. Optics Express, 2009, 17(5): 3587-3594. doi: 10.1364/OE.17.003587

    [16]

    陈育斌, 王红岩, 陆启生, 等.光抽运中红外气体激光器[J].激光与光电子学进展, 2015, 52(1): 010005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201501005

    Chen Y B, Wang H Y, Lu Q S, et al. Optically pumped mid-infrared gas lasers[J]. Laser & Optoelectronics Progress, 2015, 52(1): 010005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=jgygdzxjz201501005

    [17]

    Sorokina I T, Vodopyanov K L. Solid-State Mid-Infrared Laser Sources[M]. New York: Springer, 2003: 220-245.

    [18]

    沈德元, 范滇元.中红外激光器[M].北京:国防工业出版社, 2015: 152-163.

    Shen D Y, Fan D Y. Mid-infrared Lasers[M]. Beijing: National Defense Industry Press, 2015: 152-163.

    [19]

    Kim J S, Park R H. Feature-based block matching algorithm using integral projections[J]. Electronics Letters, 1989, 25(1): 29-30. doi: 10.1049/el:19890021

    [20]

    Zhu X S, Jain R. Compact 2W wavelength-tunable Er:ZBLAN mid-infrared fiber laser[J]. Optics Letters, 2007, 32(16): 2381-2383. doi: 10.1364/OL.32.002381

    [21]

    Zhu X S, Jain R. 10-W-level diode-pumped compact 2.78 μm ZBLAN fiber laser[J]. Optics Letters, 2007, 32(1): 26-28. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0211915194/

    [22]

    黄园芳, 彭跃峰, 魏星斌, 等.瓦级连续波2.8μm中红外Er:ZBLAN光纤激光器[J].中国激光, 2012, 39(5): 0502007. doi: 10.3788/CJL201239.0502007b

    Huang Y F, Peng Y F, Wei X B, et al. Watt-level mid-infrared 2.8μm mid-infared Er:ZBLAN fiber laser[J]. Chinese Journal of Lasers, 2012, 39(5): 0502007. doi: 10.3788/CJL201239.0502007b

    [23]

    沈炎龙, 黄珂, 周青松, 等. 10W级高效率单模中红外2.8μm光纤激光器[J].中国激光, 2015, 42(5): 0502008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201505008

    Shen Y L, Huang K, Zhou S Q, et al. 10 W-level high efficiency single-mode mid-infrared 2.8 μm fiber laser[J]. Chinese Journal of Lasers, 2015, 42(5): 0502008. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201505008

    [24]

    Yang Q L, Miao L L, Jiang G B, et al. Modeling the broadband mid-infrared dispersion compensator based on ZBLAN microfiber[J]. IEEE Photonics Technology Letters, 2016, 28(7): 728-731. doi: 10.1109/LPT.2015.2506646

    [25]

    Tokita M, Murakami S, Shimizu M, et al. Liquid-cooled 24W mid-infrared Er:ZBLAN fiber laser[J]. Optics Letters, 2009, 34(20): 3062-3064. doi: 10.1364/OL.34.003062

    [26]

    Bernier M, Faucher D, Vallée R, et al. Bragg gratings photoinduced in ZBLAN fibers by femtosecond pulses at 800nm[J]. Optics Letters, 2007, 32(5): 454-456. doi: 10.1364/OL.32.000454

    [27]

    Bernier M, Faucher D, Caron N, et al. Highly stable and efficient erbium-doped 2.8 μm all fiber laser[J]. Optics Express, 2009, 17(19): 16941-16946. doi: 10.1364/OE.17.016941

    [28]

    Fortin V, Bernier M, Bah S T, et al. 30 W fluoride glass all-fiber laser at 2.94 μm[J]. Optics Letters, 2015, 40(12): 2882-2885. doi: 10.1364/OL.40.002882

    [29]

    Aydin Y O, Faucher V, Vallée R, et al. Towards power scaling of 2.8 μm fiber lasers[J]. Optics Letters, 2018, 43(18): 4542-4545. doi: 10.1364/OL.43.004542

    [30]

    马万卓, 王天枢, 王富任, 等. 2μm可调谐高重复频率主动锁模光纤激光器[J].光电工程, 2018, 45(10): 170662. doi: 10.12086/oee.2018.170662

    Ma W Z, Wang T S, Wang F R, et al. Tunable high repetition rate actively mode-locked fiber laser at 2 μm[J]. Opto-Electronic Engineering, 2018, 45(10): 170662. doi: 10.12086/oee.2018.170662

    [31]

    李维炜, 黄义忠, 罗正钱.复合二维材料GO-MoS2锁模掺铒光纤激光器[J].光电工程, 2018, 45(10): 170653. doi: 10.12086/oee.2018.170653

    Li W W, Huang Y Z, Luo Z Q. Composite two-dimensional material GO-MoS2-based Passively mode-locked Erbium-doped fiber laser[J]. Opto-Electronic Engineering, 2018, 45(10): 170653. doi: 10.12086/oee.2018.170653

    [32]

    胡啸林, 闫志君, 黄千千, 等. 45°倾斜光纤光栅波长可调谐调Q光纤激光器[J].光电工程, 2018, 45(10): 170741. doi: 10.12086/oee.2018.170741

    Hu X L, Yan Z J, Huang Q Q, et al. Wavelength-tunable Q-switched fiber laser based on a 45° tilted fiber grating[J]. Opto-Electronic Engineering, 2018, 45(10): 170741. doi: 10.12086/oee.2018.170741

    [33]

    Frerichs C, Tauermann T. Q-switched operation of laser diode pumped erbium-doped fluorozirconate fibre laser operating at 2.7 μm[J]. Electronics Letters, 1994, 30(9): 706-707. doi: 10.1049/el:19940502

    [34]

    Tokita S, Murakami M, Shimiz S, et al. 12W Q-switched Er:ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2011, 36(15): 2812-2814. doi: 10.1364/OL.36.002812

    [35]

    Shen Y L, Wang Y S, Luan K P, et al. High peak power actively Q-switched mid-infrared fiber lasers at 3 μm[J]. Applied Physics B, 2017, 123(4): 105. doi: 10.1007/s00340-017-6684-0

    [36]

    Shen Y L, Wang Y S, Luan K P, et al. Watt-level passively Q-switched heavily Er3+-doped ZBLAN fiber laser with a semiconductor saturable absorber mirror[J]. Scientific Reports, 2016, 6: 26659. doi: 10.1038/srep26659

    [37]

    Zhang T, Feng F Y, Zhang H, et al. 2.78 μm passively Q-switched Er3+-doped ZBLAN fiber laser based on PLD-Fe2+:ZnSe film[J]. Laser Physics Letters, 2016, 13(7): 075102. doi: 10.1088/1612-2011/13/7/075102

    [38]

    Tang P H, Wu M, Wang Q K, et al. 2.8 μm pulsed Er3+: ZBLAN fiber laser modulated by topological insulator[J]. IEEE Photonics Technology Letters, 2016, 28(14): 1573-1576. doi: 10.1109/LPT.2016.2555989

    [39]

    Wei C, Wang X S, Wang F, et al. Graphene Q-switched 2.78 μm Er3+-doped fluoride fiber laser[J]. Optics Letters, 2013, 38(17): 3233-3236. doi: 10.1364/OL.38.003233

    [40]

    Tokita S, Murakami M, Shimizu S, et al. Graphene Q-switching of a 3 μm Er: ZBLAN fiber laser[C]//Proceedings of Advanced Solid-State Lasers Congress, 2013.

    [41]

    Qin Z P, Xie G Q, Zhang H, et al. Black phosphorus as saturable absorber for the Q-switched Er:ZBLAN fiber laser at 2.8 μm[J]. Optics Express, 2015, 23(19): 24713-24718. doi: 10.1364/OE.23.024713

    [42]

    Ning S G, Feng G Y, Dai S Y, et al. Mid-infrared Fe2+:ZnSe semiconductor saturable absorber mirror for passively Q-switched Er3+-doped ZBLAN fiber laser[J]. AIP Advances, 2018, 8(2): 025121. doi: 10.1063/1.5012847

    [43]

    Yang L L, Kang Z, Huang B, et al. Gold nanostars as a Q-switcher for the mid-infrared erbium-doped fluoride fiber laser[J]. Optics Letters, 2018, 43(21): 5459-5462. doi: 10.1364/OL.43.005459

    [44]

    Wang S W, Tang Y L, Yang J L, et al. MoS2 Q-switched 2.8 μm Er:ZBLAN fiber laser[J]. Laser Physics, 2019, 29(2): 025101. doi: 10.1088/1555-6611/aaf642

    [45]

    王少奇, 邓颖, 张永亮, 等.掺Er3+氟化物光纤振荡器中红外超短脉冲的产生[J].物理学报, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206

    Wang S Q, Deng Y, Zhang Y L, et al. Theoretical study on generating mid-infrared ultrashort pulse in mode-locked Er3+: ZBLAN fiber laser[J]. Acta Physica Sinica, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206

    [46]

    Duval S, Bernier M, Fortin V, et al. Femtosecond fiber lasers reach the mid-infrared[J]. Optica, 2015, 2(7): 623-626. doi: 10.1364/OPTICA.2.000623

    [47]

    Hu T, Jackson S D, Hudson D D. Ultrafast pulses from a mid-infrared fiber laser[J]. Optics Letters, 2015, 40(18): 4226-4228. doi: 10.1364/OL.40.004226

    [48]

    Tang P H, Qin Z P, Liu J, et al. Watt-level passively mode-locked Er3+-doped ZBLAN fiber laser at 2.8 μm[J]. Optics Letters, 2015, 40(21): 4855-4858. doi: 10.1364/OL.40.004855

    [49]

    Qin Z P, Xie G Q, Zhao C J, et al. Mid-infrared mode-locked pulse generation with multilayer black phosphorus as saturable absorber[J]. Optics Letters, 2016, 41(1): 56-59. doi: 10.1364/OL.41.000056

    [50]

    Zhu G W, Zhu X S, Wang F Q, et al. Graphene mode-locked fiber laser at 2.8 μm[J]. IEEE Photonics Technology Letters, 2016, 28(1): 7-10. doi: 10.1109/LPT.2015.2478836

    [51]

    Shen Y L, Wang Y S, Chen H W, et al. Wavelength-tunable passively mode-locked mid-infrared Er3+-doped ZBLAN fiber laser[J]. Scientific Reports, 2017, 7: 14913. doi: 10.1038/s41598-017-13089-6

    [52]

    Shu S L, Hou G Y, Feng J, et al. Progress of optically pumped GaSb based semiconductor disk laser[J]. Opto-Electronic Advances, 2018, 1(2): 170003. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201810004

  • 加载中

(10)

(2)

计量
  • 文章访问数:  11389
  • PDF下载数:  3848
  • 施引文献:  0
出版历程
收稿日期:  2019-02-21
修回日期:  2019-05-20
刊出日期:  2019-08-01

目录

/

返回文章
返回