离轴四反射镜衍射成像光学系统设计

何传王, 汪利华, 黄鹏, 等. 离轴四反射镜衍射成像光学系统设计[J]. 光电工程, 2019, 46(11): 190099. doi: 10.12086/oee.2019.190099
引用本文: 何传王, 汪利华, 黄鹏, 等. 离轴四反射镜衍射成像光学系统设计[J]. 光电工程, 2019, 46(11): 190099. doi: 10.12086/oee.2019.190099
He Chuanwang, Wang Lihua, Huang Peng, et al. Design of diffractive imaging optical system based on off-axis four-mirror[J]. Opto-Electronic Engineering, 2019, 46(11): 190099. doi: 10.12086/oee.2019.190099
Citation: He Chuanwang, Wang Lihua, Huang Peng, et al. Design of diffractive imaging optical system based on off-axis four-mirror[J]. Opto-Electronic Engineering, 2019, 46(11): 190099. doi: 10.12086/oee.2019.190099

离轴四反射镜衍射成像光学系统设计

  • 基金项目:
    国家重点研发计划“地球观测与导航重点”专项(2016YFB0500200);国家自然科学基金资助项目(61007024, 61475159, 61271150)
详细信息
    作者简介:
    通讯作者: 范斌(1977-),男,博士,研究员,博士生导师,主要从事空间光学系统的研究。E-mail:fanbin@ioe.ac.cn
  • 中图分类号: O439; TH743

Design of diffractive imaging optical system based on off-axis four-mirror

  • Fund Project: Supported by National Key R & D Program of China (2016YFB0500200) and National Natural Science Foundation of China (61007024, 61475159, 61271150)
More Information
  • 本文基于Schupmann消色差理论,介绍了一种离轴四反射镜衍射成像光学系统设计方法。设计了口径1 m、F数为8、视场0.12°、波段582.8 nm~682.8 nm的离轴四反射镜衍射成像光学系统。设计结果表明,该光学系统的色差得到有效校正,系统调制传递函数(MTF)在50 lp/mm范围内优于0.53,弥散斑半径的均方根值小于艾里斑半径,成像质量接近衍射极限。分析了平面衍射物镜和曲面衍射校正镜可分别采用二元光刻工艺和金刚石车削技术制作的原因。对设计结构进行公差分析,确定公差误差主要来源于中继反射镜的倾斜角度,为装调过程提供指导。设计的系统为宽波段、高像质的反射式衍射成像光学系统发展提供了参考。

  • Overview: The most effective way to improve the resolution of space optical telescope is to enlarge the aperture. With the increase of aperture, it has become increasingly difficult for traditional reflective space telescope system considering manufacturing technology, the ability to launch and space expansion as well as adjustment technology. Furthermore, considering the support and control structure, the weight of optical telescope system is proportional to the square of aperture. As a result, the control becomes more complex and the cost of optical system is increasing rapidly. Compared with the reflective telescope optical system, diffractive imaging system based on the thin film material as the objective lens can achieve large diameter, high resolution, light weight structure, space packagable and deployable, loose tolerance and so on. Diffractive imaging technology can save launch and manufacturing costs significantly, and has great potential applications in the field of high orbit high-resolution imaging. The existing eyepiece systems of diffractive telescopes mostly use refractive structure, but it can hardly meet the requirements of large aperture space optical telescope in terms of complexity and quality. The reflective eyepiece system has obvious advantages of high image quality, light weight and wide waveband because of its non-chromatic aberration and deflection of optical path. To realize an off-axis reflective diffractive imaging optical system with broadband and compact structure, we analysis the basic principle of diffractive imaging optical system. According to the Schupmann’s achromatic theory, a calculation method of off-axis four-mirror diffractive imaging optical system is introduced. By using the method, an optical system which has an aperture of 1 m, F-number of 8, waveband of 582.8 nm~682.8 nm and the full field of view of 0.12° is designed. The results show that the chromatic aberration is corrected effectively. The modulation transfer function (MTF) of the full field of view is more than 0.53 in the range of 50 lp/mm, the RMS radius of diffusion spot is less than the airy radius. It demonstrates that the image quality of system is close to the diffraction limit. It is analyzed that the processing of diffractive primary lens and diffractive correct mirror can be realized by traditional lithography and diamond turning, respectively. Monte-Carlo simulation of tolerance analysis is carried out, it determined that the tolerance error mainly originate from the tilt angle of relay mirror, which provides guidance for the process of assembling and adjusting. This system has the advantages of broadband, short optical path, ideal obscuration, which can provide references for the development of reflective diffractive imaging optical system.

  • 加载中
  • 图 1  衍射元件色散示意图

    Figure 1.  Diffractive optical element dispersion

    图 2  衍射成像光学系统原理图

    Figure 2.  Concept of diffractive imaging optical system

    图 3  离轴四反射镜衍射成像光学系统结构

    Figure 3.  Structure of diffractive imaging optical system based on off-axis four-mirror

    图 4  衍射物镜100 nm波段轴向色差

    Figure 4.  Focal shift of 100 nm wavelength for diffractive primary lens

    图 5  衍射成像光学系统100 nm波段轴向色差

    Figure 5.  Focal shift of 100 nm waveband for optical system

    图 6  系统MTF曲线

    Figure 6.  MTF curve of optical system

    图 7  系统点列图

    Figure 7.  Spot diagram of optical system

    图 8  垂轴色差曲线

    Figure 8.  Lateral color curve

    图 9  场曲畸变图

    Figure 9.  Field curvature and distortion

    图 10  衍射物镜的相位和线频率径向分布曲线

    Figure 10.  Phase and line frequency versus aperture of diffractive primary lens

    图 11  衍射校正镜的相位和线频率径向分布曲线

    Figure 11.  Phase and line frequency versus aperture of diffractive correct mirror

    表 1  同轴四反射镜衍射成像光学系统初始结构参量

    Table 1.  Initial parameters of diffractive imaging optical system based on coaxial four-mirror

    Surface Radius/mm Thickness/mm
    Diffractive objective 20000.000
    Primary mirror -1980.200 -1000.000
    Secondary mirror -666.561 1000.000
    Tertiary mirror -1004.784 -1000.000
    Diffractive correct mirror 100.000 70.000
    Image
    下载: 导出CSV

    表 2  优化后的离轴四反射镜衍射成像光学系统结构参量

    Table 2.  Optimized parameters of diffractive imaging optical system based on off-axis four-mirror

    Surface Radius/mm Thickness/mm Conic Diameter/mm
    Diffractive objective 20750.000 1000
    Primary mirror -9925.477 -1938.785 -2.794 160
    Secondary mirror 45520.000 1938.785 -4.982 200
    Tertiary mirror 153600.000 -1938.785 2.745 250
    Diffractive correct mirror 1539.624 2148.094 -0.160 270
    Image 17
    下载: 导出CSV

    表 3  衍射面多项式系数

    Table 3.  Coefficient of diffractive surface

    Surface Coefficient
    Diffractive objective -0.248, 1.551E-010, -1.926E-019, -6.008E-027, 1.026E-032
    Diffractive correct mirror 3.411, 3.141E-007, -1.094E-013, 1.392E-017, -4.556E-022
    下载: 导出CSV

    表 4  蒙特卡洛最终分析结果

    Table 4.  Final Monte-Carlo analysis results

    Monte-Carlo analysis MTF value
    ≥98% 0.111
    ≥90% 0.165
    ≥80% 0.216
    ≥50% 0.302
    ≥20% 0.400
    ≥10% 0.439
    ≥2% 0.481
    下载: 导出CSV

    表 5  最敏感的公差分析结果

    Table 5.  Results of the most sensitive tolerance analysis

    Type Value Criterion Change
    TETY 3 4 0.00140000 0.32911857 -0.19965035
    TETY 3 4 -0.00140000 0.32911857 -0.19965035
    TETX 3 4 0.00140000 0.38914889 -0.13962002
    TETX 3 4 -0.00140000 0.39516929 -0.13359962
    TEDY 3 4 0.01000000 0.49963567 -0.02913324
    TEDY 9 9 -0.01000000 0.50957441 -0.01919451
    TEDX 3 4 0.01000000 0.51019057 -0.01857834
    TEDX 3 4 -0.01000000 0.51019057 -0.01857834
    TEZI 5 -1.5820E-005 0.51396962 -0.01479929
    TEDX 9 9 0.01000000 0.51761049 -0.01115843
    下载: 导出CSV
  • [1]

    于前洋, 曲宏松.实现同步轨道(GEO)高分辨力对地观测的技术途径(上)[J].中国光学, 2008, 1(1): 1–12. http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz200901001

    Yu Q Y, Qu H S. Realization of high-resolution visible earth observation on geostationary earth orbit[J]. Chinese Journal of Optics and Applied Optics, 2008, 1(1): 1–12. http://d.old.wanfangdata.com.cn/Periodical/zggxyyygxwz200901001

    [2]

    Whiteaker K L, Marshalek R G, Domber J L, et al. Large aperture diffractive receiver for deep space optical communications[C]//Proceedings of Applications of Lasers for Sensing and Free Space Communications 2015, Arlington, Virginia United States, 2015: LTh3C.3.

    [3]

    Huang W, Ma J Y, Zhu F, et al. Low divergent diffractive optical element for remote detection[J]. Chinese Optics Letters, 2014, 12(7): 070501. doi: 10.3788/COL201412.070501

    [4]

    刘韬, 周一鸣, 王景泉, 等.波带片衍射成像技术在对地观测卫星中的应用[J].航天器工程, 2012, 21(3): 88–95. doi: 10.3969/j.issn.1673-8748.2012.03.035

    Liu T, Zhou Y M, Wang J Q, et al. Application of zone plate diffractive imaging technology in earth observation satellites[J]. Spacecraft Engineering, 2012, 21(3): 88–95. doi: 10.3969/j.issn.1673-8748.2012.03.035

    [5]

    Rahlves M, Rezem M, Boroz K, et al. Flexible, fast, and low-cost production process for polymer based diffractive optics[J]. Optics Express, 2015, 23(3): 3614–3622. doi: 10.1364/OE.23.003614

    [6]

    刘玉凤, 李林.二元光学透镜在资源卫星中的应用[J].光学技术, 2004, 30(5): 590–593. doi: 10.3321/j.issn:1002-1582.2004.05.022

    Liu Y F, Li L. Application of binary optical lens in resource satellite[J]. Optical Technique, 2004, 30(5): 590–593. doi: 10.3321/j.issn:1002-1582.2004.05.022

    [7]

    Tullson D, Andersen G. Broadband antihole photon sieve telescope[J]. Applied Optics, 2007, 46(18): 3706–3708. doi: 10.1364/AO.46.003706

    [8]

    杨伟, 吴时彬, 汪利华, 等.微结构薄膜望远镜研究进展分析[J].光电工程, 2017, 44(5): 475–482. doi: 10.3969/j.issn.1003-501X.2017.05.001

    Yang W, Wu S B, Wang L H, et al. Research advances and key technologies of macrostructure membrane telescope[J]. Opto-Electronic Engineering, 2017, 44(5): 475–482. doi: 10.3969/j.issn.1003-501X.2017.05.001

    [9]

    Li Z L, Kim I, Zhang L, et al. Dielectric meta-holograms enabled with dual magnetic resonances in visible light[J]. ACS Nano, 2017, 11(9): 9382–9389. doi: 10.1021/acsnano.7b04868

    [10]

    Hyde R A. Eyeglass. 1. Very large aperture diffractive telescopes[J]. Applied Optics, 1999, 38(19): 4198–4212. doi: 10.1364/AO.38.004198

    [11]

    Hyde R A, Dixit S N, Weisberg A H, et al. Eyeglass: a very large aperture diffractive space telescope[J]. Proceedings of SPIE, 2002, 4849: 28–39. doi: 10.1117/12.460420

    [12]

    Atcheson P D, Stewart C, Domber J, et al. MOIRE: initial demonstration of a transmissive diffractive membrane optic for large lightweight optical telescopes[J]. Proceedings of SPIE, 2012, 8442: 844221. doi: 10.1117/12.925413

    [13]

    Copp T L, Domber J L, Atcheson P D, et al. MOIRE: membrane material property characterizations, testing and lessons learned[C]//Proceedings of Spacecraft Structures Conference, National Harbor, Maryland, 2014.

    [14]

    Domber J L, Atcheson P D, Kommers J. MOIRE: ground test bed results for a large membrane telescope[C]//Proceedings of Spacecraft Structures Conference, National Harbor, Maryland, 2014.

    [15]

    Atcheson P, Domber J, Whiteaker K, et al. MOIRE: ground demonstration of a large aperture diffractive transmissive telescope[J]. Proceedings of SPIE, 2014, 9143: 91431W. http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ024144916/

    [16]

    Britten J A, Dixit S N, DeBruyckere M, et al. Large-aperture fast multilevel Fresnel zone lenses in glass and ultrathin polymer films for visible and near-infrared imaging applications[J]. Applied Optics, 2014, 53(11): 2312–2316. doi: 10.1364/AO.53.002312

    [17]

    Andersen G. Large optical photon sieve[J]. Optics Letters, 2005, 30(22): 2976–2978. doi: 10.1364/OL.30.002976

    [18]

    Andersen G. Membrane photon sieve telescopes[J]. Applied Optics, 2010, 49(33): 6391–6394. doi: 10.1364/AO.49.006391

    [19]

    张健, 栗孟娟, 阴刚华, 等.用于太空望远镜的大口径薄膜菲涅尔衍射元件[J].光学 精密工程, 2016, 24(6): 1289–1296. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201606008

    Zhang J, Li M J, Yin G H, et al. Large-diameter membrane Fresnel diffraction elements for space telescope[J]. Optics and Precision Engineering, 2016, 24(6): 1289–1296. http://d.old.wanfangdata.com.cn/Periodical/gxjmgc201606008

    [20]

    王若秋.基于衍射成像系统的薄膜元件关键技术研究[D].长春: 中国科学院长春光学精密机械与物理研究所, 2017.

    Wang R Q. Research on key technologies of thin film element based on diffractive imaging system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2017.http://cdmd.cnki.com.cn/Article/CDMD-80139-1017063979.htm

    [21]

    徐琰, 颜树华, 周春雷, 等.宽波段超大孔径反衍望远系统设计[J].半导体光电, 2007, 28(4): 579–592. doi: 10.3969/j.issn.1001-5868.2007.04.034

    Xu Y, Yan S H, Zhou C L, et al. Design of hybrid reflective-diffractive telescope with very large aperture and broad bandwidth[J]. Semiconductor Optoelectronics, 2007, 28(4): 579–592. doi: 10.3969/j.issn.1001-5868.2007.04.034

    [22]

    任智斌, 胡佳盛, 唐洪浪, 等. 10m大口径薄膜衍射主镜的色差校正技术研究[J].光子学报, 2017, 46(4): 0422004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzxb201704004

    Ren Z B, Hu J S, Tang H L, et al. Study on chromatic aberration correction of 10 meter large aperture membrane diffractive primary lens[J]. Acta Photonica Sinica, 2017, 46(4): 0422004. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzxb201704004

    [23]

    张楠, 卢振武, 李凤有.衍射望远镜光学系统设计[J].红外与激光工程, 2007, 36(1): 106–108. doi: 10.3969/j.issn.1007-2276.2007.01.026

    Zhang N, Lu Z W, Li F Y. Optical design of diffractive telescope[J]. Infrared and Laser Engineering, 2007, 36(1): 106–108. doi: 10.3969/j.issn.1007-2276.2007.01.026

    [24]

    Faklis D, Morris G M. Broadband imaging with holographic lenses[J]. Optical Engineering, 1989, 28(6): 286592. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=CC026097793

    [25]

    郭永洪.现代红外光学系统研究[D].杭州: 浙江大学, 1999.http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y323849

    [26]

    潘君骅.光学非球面的设计、加工与检验[M].苏州:苏州大学出版社, 2004.

    Pan J H. The Design, Manufacture and Test of the Aspherical Optical Surfaces[M]. Suzhou: Suzhou University Press, 2004.

    [27]

    ZEMAX Development Corporation. Zemax OpticStudio 17 Help Files[M]. 2016.

    [28]

    张以谟.现代应用光学[M].北京:电子工业出版社, 2018.

    Zhang Y M. Contemporary Applied Optics[M]. Beijing: Publishing House of Electronics Industry, 2018.

    [29]

    王松, 杨伟, 吴时彬, 等.柔性光学聚酰亚胺薄膜折射率均匀性检测方法[J].光电工程, 2016, 43(7): 85–88. doi: 10.3969/j.issn.1003-501X.2016.07.014

    Wang S, Yang W, Wu S B, et al. Refractive index homogeneity measure method of flexible optical polyimide film[J]. Opto-Electronic Engineering, 2016, 43(7): 85–88. doi: 10.3969/j.issn.1003-501X.2016.07.014

    [30]

    王鹏.衍射光学元件设计及金刚石单点车削技术的研究[D].长春: 长春理工大学, 2007.

    Wang P. Research on design and process prameters of diamond turning of diffractive optical elements[D]. Changchun: Changchun University of Science and Technology, 2007.http://cdmd.cnki.com.cn/article/cdmd-10186-2007063788.htm

  • 加载中

(11)

(5)

计量
  • 文章访问数:  8298
  • PDF下载数:  3632
  • 施引文献:  0
出版历程
收稿日期:  2019-03-08
修回日期:  2019-05-10
刊出日期:  2019-11-01

目录

/

返回文章
返回