用于检测激光棒的变倾角马赫-曾德尔干涉仪

孔璐,陈磊,丁煜,等. 用于检测激光棒的变倾角马赫-曾德尔干涉仪[J]. 光电工程,2020,47(2):190254. doi: 10.12086/oee.2020.190254
引用本文: 孔璐,陈磊,丁煜,等. 用于检测激光棒的变倾角马赫-曾德尔干涉仪[J]. 光电工程,2020,47(2):190254. doi: 10.12086/oee.2020.190254
Kong L, Chen L, Ding Y, et al. Variable-inclination Mach-Zehnder interferometer for testing laser robs[J]. Opto-Electron Eng, 2020, 47(2): 190254. doi: 10.12086/oee.2020.190254
Citation: Kong L, Chen L, Ding Y, et al. Variable-inclination Mach-Zehnder interferometer for testing laser robs[J]. Opto-Electron Eng, 2020, 47(2): 190254. doi: 10.12086/oee.2020.190254

用于检测激光棒的变倾角马赫-曾德尔干涉仪

  • 基金项目:
    国家自然科学基金资助项目(U1731115)
详细信息
    作者简介:
    通讯作者: 陈磊(1964-),男,博士,研究员,博士生导师,主要从事光学计量测试与光电智能化仪器等方面的研究。E-mail:chenlei@njust.edu.cn
  • 中图分类号: O436

Variable-inclination Mach-Zehnder interferometer for testing laser robs

  • Fund Project: Supported by National Natural Science Foundation of China (U1731115)
More Information
  • 为实现激光棒透射波前的测量,改善一般泰曼型或斐索型干涉仪测量小口径激光棒透射波前时的边缘衍射效应,研究了一种变倾角移相马赫-曾德尔干涉仪。通过调整移相反射镜的倾斜姿态,改变入射到马赫-曾德尔干涉光路的光束倾角,参考光束与测试光束的光程差随之变化,从而在相干光之间引入相移,实现了相移干涉测量。利用该干涉仪测量一根口径为Ф6 mm、长度为60 mm激光棒(Nd:YAG)的透射波前,测量结果的峰谷值(PV)为0.391λ,均方根值(RMS)为0.056λ;使用ZYGO激光干涉仪测量同一根激光棒,其透射波前的峰谷值(PV)为0.370λ,均方根值(RMS)为0.064λ。对比结果表明该干涉仪能实现光学元件透射波前的高精度检测,测试结果的一致性验证了该方案的可行性。该变倾角移相方法具有较高的移相精度和较大的移相范围,且该变倾角干涉系统中光束仅一次透过待测激光棒,可有效抑制多光束干涉现象,改善小口径激光棒的边缘衍射效应。

  • Overview: In order to measure the transmission wavefront of laser rods and to improve the edge diffraction effect of small-aperture laser rods measured by a general Tayman or Fizeau interferometer, a variable-inclination phase shifting Mach-Zehnder interferometer was proposed. In the proposed interferometer, the phase shifting reflector was placed on the electric linear rotating table. By adjusting the tilting attitude of the phase shifting reflector, the incident angle into the Mach-Zehnder interference cavity was changed. A laser rod with a certain length was placed in the test optical beam as the test object, and it could be used as a retarder in the equal optical path Mach-Zehnder interferometer to increase the optical path difference between the reference beam and the test beam, so the proposed interference system met the requirement of phase shifting. The optical path difference between the reference beam and the test beam changed each time the incident angle into the Mach-Zehnder interference cavity was transformed by the phase shifting reflector placed on the electric linear rotating table, thereby the phase shifting quantity was introduced to the coherent light. The phase shifting interferometry was realized under the interaction of phase shifting reflector and laser rob. The transmission wavefront of a laser rod (Nd:YAG) with the diameter of 6 mm and the length of 60 mm was measured by this interferometer, the peak-valley value (PV) and root mean square value (RMS) of the wavefront are 0.391λ and 0.056λ. The same laser rod is measured by ZYGO GPI XP interferometer, the peak-valley (PV) and root mean square (RMS) of the wavefront are 0.370λ and 0.064λ. The surface shape and numerical values of the two measurements are consistent, the comparison results show that the proposed interferometer can achieve high precision measurement of transmission wavefront of the laser robs. The proposed variable-inclination phase shifting Mach-Zehnder interferometer can realize periodic phase shifting only by using a reflector with adjustable inclination angle in the traditional Mach-Zehnder interferometer. It has high phase shifting precision and wide phase shifting range. The high precision phase modulation can be achieved by using conventional precision stepping motor. The proposed interferometer system is cheap and compact. The transmission wavefront of a small aperture laser rod can be measured by the variable-inclination phase-shifting system. The beam in the system can pass through the laser rod only once, therefore, the interferometer has obvious advantages in measuring the transmission wavefront of a small-aperture optical element with a certain length. It can effectively suppress the multi-beam interference and improve the edge diffraction effect of small-aperture optical elements.

  • 加载中
  • 图 1  (a) 变倾角移相的原理光路图;(b)透射式等倾干涉示意图

    Figure 1.  (a) Schematic diagram of variable-inclination phase shifting; (b) Diagram of transmissivity equal inclination interference

    图 2  最小二乘求解线性回归模型迭代算法流程图

    Figure 2.  Flow chart of least squares iterative algorithm for solving linear regression model

    图 3  变倾角时间移相马赫-曾德尔干涉仪系统光路图

    Figure 3.  Schematic optical diagram of variable-inclination phase shifting Mach-Zehnder interferometer

    图 4  实验中获得9幅移相干涉图

    Figure 4.  9 phase shifting interferograms

    图 5  变倾角时间移相马赫-曾德尔干涉仪中得到的激光棒透射波前

    Figure 5.  Transmission wavefront of laser rob measured by variable-inclination Mach-Zehnder interferometer

    图 6  ZYGO GPI XP干涉仪中得到的激光棒透射波前

    Figure 6.  Transmission wavefront of the same laser rob measured by ZYGO GPI XP interferometer

    图 7  系统移相量与反射镜倾角的关系图

    Figure 7.  Relationship between system phase shift and inclination of reflector

    图 8  ZYGO干涉仪测量激光棒透射波前光路图

    Figure 8.  Optical diagram for testing laser robs in ZYGO interferometer

    图 9  (a) ZYGO干涉仪中反射平晶距激光棒10 cm的干涉图;(b) ZYGO干涉仪中反射平晶距激光棒30 cm的干涉图;(c)马赫-曾德尔干涉仪中得到的干涉图

    Figure 9.  (a) Interferogram of reflection flat 10 cm away from the laser rob in ZYGO interferometer; (b) Interferogram of reflection flat 30 cm away from the laser rob in ZYGO interferometer; (c) Interferogram in M-Z interferometer

    表 1  随机移相算法计算移相量与理想移相量对比

    Table 1.  Comparison of the phase shift quantity calculated by random phase shift algorithm and the ideal quantity

    干涉图序号 理想的系统移相量/rad 随机移相算法计算的移相量/rad
    1 0 0
    2 0.079 0.075
    3 0.317 0.308
    4 0.712 0.710
    5 1.266 1.264
    6 1.978 1.978
    7 2.849 2.853
    8 3.878 3.881
    9 5.065 5.063
    10 6.376 6.382
    下载: 导出CSV
  • [1]

    陈进榜, 张培河.激光棒干涉测试中的若干问题[J].激光与红外, 1986(10): 14-19.

    Chen J B, Zhang P H. Several problems in the interferometric of laser robs[J]. Laser and Infrared, 1986(10): 14-19.

    [2]

    何勇, 陈进榜, 朱日宏, 等.激光棒波前畸变测试仪[J].中国激光, 2003, 30(10): 938-942. doi: 10.3321/j.issn:0258-7025.2003.10.018

    He Y, Chen J B, Zhu R H, et al. Laser rods wavefront distortion testing instrument[J]. Chinese Journal of Lasers, 2003, 30(10): 938-942. doi: 10.3321/j.issn:0258-7025.2003.10.018

    [3]

    吴志飞, 陈磊, 孔璐, 等.一种用于波前测量的单次透射方法[C]//第十七届全国光学测试学术交流会摘要集, 2018: 1.

    Wu Z F, Chen L, Kong L, et al. Single transmission method for wavefront measurement[C]//The 17th National Optical Testing Academic Exchange Conference Summary, 2018: 1.

    [4]

    Bone D J, Bachor H A, Sandeman R J. Fringe-pattern analysis using a 2-D Fourier transform[J]. Applied Optics, 1986, 25(10): 1653-1660. doi: 10.1364/AO.25.001653

    [5]

    孟诗, 陈磊, 朱文华, 等.大口径光学元件瞬态波前检测[J].光电工程, 2018, 45(1): 170536. doi: 10.12086/oee.2018.170536

    Meng S, Chen L, Zhu W H, et al. Instantaneous wavefront measurement of large aperture optical elements[J]. Opto-Electronic Engineering, 2018, 45(1): 170536. doi: 10.12086/oee.2018.170536

    [6]

    张敏, 唐锋, 王向朝, 等.二维快速傅里叶变换干涉图相位提取误差分析[J].中国激光, 2013, 40(3): 0308002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201303030

    Zhang M, Tang F, Wang X Z, et al. Phase retrieval errors analysis of interferogram using two dimensional fast Fourier transform method[J]. Chinese Journal of Lasers, 2013, 40(3): 0308002. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgjg201303030

    [7]

    王圣文, 于瀛洁, 付烨.数字干涉仪移相器PZT位移测量与标定[J].计量与测试技术, 2017, 44(10): 33-35, 37. http://d.old.wanfangdata.com.cn/Periodical/jlycsjs201710015

    Wang S W, Yu Y J, Fu Y. PZT displacement measurement and calibration of digital interferometer phase shifter[J]. Metrology & Measurement Technique, 2017, 44(10): 33-35, 37. http://d.old.wanfangdata.com.cn/Periodical/jlycsjs201710015

    [8]

    高志山, 王若言, 成晓强.压电陶瓷装置微位移的光学测量与控制技术[J].电光与控制, 2016, 23(8): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dgykz201608001

    Gao Z S, Wang R Y, Cheng X Q. Optical measurement and control of micro displacement for a piezoelectric device[J]. Electronics Optics & Control, 2016, 23(8): 1-5. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dgykz201608001

    [9]

    Min J W, Yao B L, Gao P, et al. Parallel phase-shifting interferometry based on Michelson-like architecture[J]. Applied Optics, 2010, 49(34): 6612-6616. doi: 10.1364/AO.49.006612

    [10]

    Deck L L, Soobitsky J A. Phase-shifting via wavelength tuning in very large aperture interferometers[J]. Proceedings of SPIE, 1999, 3782: 432-442. doi: 10.1117/12.369221

    [11]

    丁煜, 陈磊, 王志华, 等.电调谐波长移相干涉术[J].红外与激光工程, 2018, 47(5): 0506003. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201805016

    Ding Y, Chen L, Wang Z H, et al. Wavelength phase shifting interferometry based on current modulation[J]. Infrared and Laser Engineering, 2018, 47(5): 0506003. http://d.old.wanfangdata.com.cn/Periodical/hwyjggc201805016

    [12]

    Chi M J, Jensen O B, Petersen P M. Tuning range and output power optimization of an external-cavity GaN diode laser at 455 nm[J]. Applied Optics, 2016, 55(9): 2263-2269. doi: 10.1364/AO.55.002263

    [13]

    Bird D M, Armitage J R, Kashyap R, et al. Narrow line semiconductor laser using fibre grating[J]. Electronics Letters, 1991, 27(13): 1115-1116. doi: 10.1049/el:19910696

    [14]

    Sircar S, Bhattacharya K. Measurement of birefringence using polarization phase-shifting Mach-Zehnder interferometer[J]. Optical Engineering, 2015, 54(11): 113112. doi: 10.1117/1.OE.54.11.113112

    [15]

    Das T, Bhattacharya K. Polarizing phase shifting interferometry of total internal reflection light for measurement of refractive index and its spatial variation in liquid samples[J]. Optical Engineering, 2016, 55(7): 077102. doi: 10.1117/1.OE.55.7.077102

    [16]

    Robledo-Sanchez C, Juarez-Salazar R, Meneses-Fabian C, et al. Phase-shifting interferometry based on the lateral displacement of the light source[J]. Optics Express, 2013, 21(14): 17228-17233. doi: 10.1364/OE.21.017228

    [17]

    刘致远, 陈磊, 朱文华, 等.变倾角移相斜入射动态干涉仪[J].光电工程, 2019, 46(8): 180516. doi: 10.12086/oee.2019.180516

    Liu Z Y, Chen L, Zhu W H, et al. Oblique incidence dynamic phase-shifting interferometer based on inclination angle deflection[J]. Opto-Electronic Engineering, 2019, 46(8): 180516. doi: 10.12086/oee.2019.180516

    [18]

    Deck L L. Model-based phase shifting interferometry[J]. Applied Optics, 2014, 53(21): 4628-4636. doi: 10.1364/AO.53.004628

    [19]

    宋贵才.物理光学理论与应用[M]. 3版.北京:北京大学出版社, 2019.

    Song G C. The Theory and Application of Physical Optics[M]. 3rd ed. Beijing: Peking University Press, 2019.

  • 加载中

(9)

(1)

计量
  • 文章访问数:  8928
  • PDF下载数:  2008
  • 施引文献:  0
出版历程
收稿日期:  2019-05-17
修回日期:  2019-09-20
刊出日期:  2020-02-01

目录

/

返回文章
返回