Chi N, Chen H. Progress and prospect of high-speed visible light communication[J]. Opto-Electron Eng, 2020, 47(3): 190687. doi: 10.12086/oee.2020.190687
Citation: Chi N, Chen H. Progress and prospect of high-speed visible light communication[J]. Opto-Electron Eng, 2020, 47(3): 190687. doi: 10.12086/oee.2020.190687

Progress and prospect of high-speed visible light communication

    Fund Project: Supported by National Key R&D Program of China (2017YFB0403603) and National Natural Science Foundation of China (61571133)
More Information
  • Based on visible light communication technology which has been a research hotspot in the field of communication, this paper reviews the background of visible light communication, illustrates the basic system architecture and explores the research progress of visible light communication around five frontier directions: material chips, high-speed systems, multiplexing networks, underwater visible light communication and machine learning. The challenges faced by visible light communication are analyzed. Finally, looking forward to the prospect of visible light communication: in the intelligent era of future, visible light communication will become an indispensable part of communication networks with its advantages of high-speed transmission, and cooperate with other communication technologies to complement human life.
  • 加载中
  • [1] Chi N, Haas H, Kavehrad M, et al. Visible light communications: demand factors, benefits and opportunities[Guest Editorial][J]. IEEE Wireless Communications, 2015, 22(2): 5-7.

    Google Scholar

    [2] 迟楠. LED可见光通信技术[M].北京:清华大学出版社, 2013.

    Google Scholar

    Chi N. LED Visible Light Communication Technologies[M]. Beijing: Tsinghua University Press, 2013.

    Google Scholar

    [3] 迟楠, 石蒙, 哈依那尔, 等. LiFi:可见光通信技术发展现状与展望[J].照明工程学报, 2019, 30(1): 1-9, 24.

    Google Scholar

    Chi N, Shi M, Ha Y, et al. LiFi: development status and prospects of visible light communication technology[J]. China Illuminating Engineering Journal, 2019, 30(1): 1-9, 24.

    Google Scholar

    [4] Chi N. The transmitter of the visible light communication system[M]//Chi N. LED-Based Visible Light Communications. Berlin, Heidelberg: Springer, 2018: 13-38.

    Google Scholar

    [5] Fujieda I, Kosugi T, Inaba Y. Speckle noise evaluation and reduction of an edge-lit backlight system utilizing laser diodes and an optical fiber[J]. Journal of Display Technology, 2009, 5(11): 414-417.

    Google Scholar

    [6] Zhao Y J, Fu H Q, Wang G T, et al. Toward ultimate efficiency: progress and prospects on planar and 3D nanostructured nonpolar and semipolar InGaN light-emitting diodes[J]. Advances in Optics and Photonics, 2018, 10(1): 246-308.

    Google Scholar

    [7] Shen C, Lee C, Ng T K, et al. High-speed 405-nm Superluminescent Diode (SLD) with 807-MHz modulation bandwidth[J]. Optics Express, 2016, 24(18): 20281-20286.

    Google Scholar

    [8] Zhou Y J, Zhu X, Hu F C, et al. Common-anode LED on a Si substrate for beyond 15 Gbit/s underwater visible light communication[J]. Photonics Research, 2019, 7(9): 1019-1029.

    Google Scholar

    [9] Maaskant P P, Shams H, Akhter M, et al. High-speed substrate-emitting micro-light-emitting diodes for applications requiring high radiance[J]. Applied Physics Express, 2013, 6(2): 022102.

    Google Scholar

    [10] Ferreira R X G, Xie E Y, McKendry J J D, et al. High bandwidth GaN-based micro-LEDs for multi-Gb/s visible light communications[J]. IEEE Photonics Technology Letters, 2016, 28(19): 2023-2026.

    Google Scholar

    [11] Islim M S, Ferreira R X, He X Y, et al. Towards 10 Gb/s orthogonal frequency division multiplexing-based visible light communication using a GaN violet micro-LED[J]. Photonics Research, 2017, 5(2): A35-A43.

    Google Scholar

    [12] Zhu S C, Yu Z G, Liu L, et al. Enhancing the spontaneous emission rate by modulating carrier distribution in GaN-based surface plasmon light-emitting diodes[J]. Optics Express, 2017, 25(9): 9617-9627.

    Google Scholar

    [13] Li J H, Huang X X, Ji X M, et al. An integrated PIN-array receiver for visible light communication[J]. Journal of Optics, 2015, 17(10): 105805.

    Google Scholar

    [14] Yang H D, Kil Y H, Yang J H, et al. Characterization of n-Ge/i-Ge/p-Si PIN photo-diode[J]. Materials Science in Semiconductor Processing, 2014, 22: 37-43.

    Google Scholar

    [15] Li J H, Wang F M, Zhao M M, et al. Large-coverage underwater visible light communication system based on blue LED employing equal gain combining with integrated PIN array reception[J]. Applied Optics, 2019, 58(2): 383-388.

    Google Scholar

    [16] Wang C, Yu H Y, Zhu Y J. A long distance underwater visible light communication system with single photon avalanche diode[J]. IEEE Photonics Journal, 2016, 8(5): 7906311.

    Google Scholar

    [17] Ji Y W, Wu G F, Wang C, et al. Experimental study of SPAD-based long distance outdoor VLC systems[J]. Optics Communications, 2018, 424: 7-12.

    Google Scholar

    [18] Karbalayghareh M, Miramirkhani F, Safari M, et al. Vehicular visible light communications with SPAD receivers[C]//Proceedings of 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, 2019: 1-5.

    Google Scholar

    [19] Huang X X, Shi J Y, Li J H, et al. 750Mbit/s visible light communications employing 64QAM-OFDM based on amplitude equalization circuit[C]//Proceedings of 2015 Optical Fiber Communications Conference and Exhibition (OFC), Los Angeles, CA, USA, 2015: 1-3.

    Google Scholar

    [20] Wang F M, Liu Y F, Shi M, et al. 3.075 Gb/s underwater visible light communication utilizing hardware pre-equalizer with multiple feature points[J]. Optical Engineering, 2019, 58(5): 056117.

    Google Scholar

    [21] Wang Y G, Tao L, Huang X X, et al. 8-Gb/s RGBY LED-based WDM VLC system employing high-order CAP modulation and hybrid post equalizer[J]. IEEE Photonics Journal, 2015, 7(6): 7904507.

    Google Scholar

    [22] Zou P, Liu Y F, Wang F M, et al. Mitigating nonlinearity characteristics of gray-coding square 8QAM in underwater VLC system[C]//Proceedings of 2018 Asia Communications and Photonics Conference (ACP), Hangzhou, China, 2018: 1-3.

    Google Scholar

    [23] Le Minh H, O'Brien D, Faulkner G, et al. 80 Mbit/s visible light communications using pre-equalized white LED[C]// Proceedings of the 34th European Conference on Optical Communication, Brussels, Belgium, 2008.

    Google Scholar

    [24] Vucic J, Kottke C, Nerreter S, et al. White light wireless transmission at 200+ Mb/s net data rate by use of discrete-multitone modulation[J]. IEEE Photonics Technology Letters, 2009, 21(20): 1511-1513.

    Google Scholar

    [25] Vučič J, Kottke C, Nerreter S, et al. 513 Mbit/s visible light communications link based on DMT-modulation of a white LED[J]. Journal of Lightwave Technology, 2010, 28(24): 3512-3518.

    Google Scholar

    [26] Vučić J, Kottke C, Habel K, et al. 803 Mbit/s visible light WDM link based on DMT modulation of a single RGB LED luminary[C]//Proceedings of 2011 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference, Los Angeles, CA, USA, 2011.

    Google Scholar

    [27] Cossu G, Khalid A M, Choudhury P, et al. 2.1 Gbit/s visible optical wireless transmission[C]//Proceedings of the 38th European Conference and Exhibition on Optical Communications, Amsterdam, Netherlands, 2012.

    Google Scholar

    [28] Wu F M, Lin C T, Wei C C, et al. 3.22-Gb/s WDM visible light communication of a single RGB LED employing carrier-less amplitude and phase modulation[C]//Proceedings of 2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, CA, USA, 2013.

    Google Scholar

    [29] Wang Y Q, Huang X X, Zhang J W, et al. Enhanced performance of visible light communication employing 512-QAM N-SC-FDE and DD-LMS[J]. Optics Express, 2014, 22(13): 15328-15334.

    Google Scholar

    [30] Cossu G, Wajahat A, Corsini R, et al. 5.6 Gbit/s downlink and 1.5 Gbit/s uplink optical wireless transmission at indoor distances (≥ 1.5 m)[C]//Proceedings of 2014 The European Conference on Optical Communication (ECOC), Cannes, France, 2014.

    Google Scholar

    [31] Wang Y G, Tao L, Huang X X, et al. 8-Gb/s RGBY LED- based WDM VLC system employing high-order CAP modulation and hybrid post equalizer[J]. IEEE Photonics Journal, 2015, 7(6): 7904507.

    Google Scholar

    [32] Chi N, Shi J Y, Zhou Y J, et al. High speed LED based visible light communication for 5G wireless backhaul[C]//Proceedings of 2016 IEEE Photonics Society Summer Topical Meeting Series (SUM), Newport Beach, CA, USA, 2016.

    Google Scholar

    [33] Chun H, Rajbhandari S, Faulkner G, et al. LED based wavelength division multiplexed 10 Gb/s visible light communications[J]. Journal of Lightwave Technology, 2016, 34(13): 3047-3052.

    Google Scholar

    [34] Wang Y Q, Shi J Y, Yang C, et al. Integrated 10  Gb/s multilevel multiband passive optical network and 500  Mb/s indoor visible light communication system based on Nyquist single carrier frequency domain equalization modulation[J]. Optics Letters, 2014, 39(9): 2576-2579.

    Google Scholar

    [35] Wang Y G, Chi N, Wang Y Q, et al. Network architecture of a high-speed visible light communication local area network[J]. IEEE Photonics Technology Letters, 2015, 27(2): 197-200.

    Google Scholar

    [36] Rehman S U, Ullah S, Chong P H J, et al. Visible light communication: a system perspective—overview and challenges[J]. Sensors, 2019, 19(5): 1153.

    Google Scholar

    [37] Shao S H, Khreishah A, Ayyash M, et al. Design and analysis of a visible-light-communication enhanced WiFi system[J]. Journal of Optical Communications and Networking, 2015, 7(10): 960-973.

    Google Scholar

    [38] Hammouda M, Akln S, Vegni A M, et al. Hybrid RF/LC Systems under QoS Constraints[C]//Proceedings of the 25th International Conference on Telecommunications (ICT), St. Malo, France, 2018: 312-318.

    Google Scholar

    [39] Alresheedi M T, Hussein A T, Elmirghani J M H. Uplink design in VLC systems with IR sources and beam steering[J]. IET Communications, 2017, 11(3): 311-317.

    Google Scholar

    [40] 迟楠, 胡昉辰, 周盈君.高速可见光通信技术的挑战与展望[J].中兴通讯技术, 2019, 25(5): 56-61.

    Google Scholar

    Chi N, Hu F C, Zhou Y J. The challenges and prospects of high-speed visible light communication technology[J]. ZTE Technology Journal, 2019, 25(5): 56-61.

    Google Scholar

    [41] Duntley S Q. Light in the sea[J]. Journal of the Optical Society of America, 1963, 53(2): 214-233.

    Google Scholar

    [42] Nakamura K, Mizukoshi I, Hanawa M. Optical wireless transmission of 405 nm, 1.45 Gbit/s optical IM/DD-OFDM signals through a 4.8 m underwater channel[J]. Optics Express, 2015, 23(2): 1558-1566.

    Google Scholar

    [43] Shen C, Guo Y J, Oubei H M, et al. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate[J]. Optics Express, 2016, 24(22): 25502-25509.

    Google Scholar

    [44] Ho C M, Lu C K, Lu H H, et al. A 10m/10Gbps underwater wireless laser transmission system[C]//Proceedings of 2017 Optical Fiber Communications Conference and Exhibition, Los Angeles, CA, USA, 2017.

    Google Scholar

    [45] Huang X H, Li C Y, Lu H H, et al. 6-m/10-Gbps underwater wireless red-light laser transmission system[J]. Optical Engineering, 2018, 57(6): 066110.

    Google Scholar

    [46] Zou P, Liu Y F, Wang F M, et al. Enhanced performance of odd order square geometrical shaping QAM constellation in underwater and free space VLC system[J]. Optics Communications, 2019, 438: 132-140.

    Google Scholar

    [47] Wang P L, Li C, Xu Z Y. A cost-efficient real-time 25 Mb/s system for LED-UOWC: design, channel coding, FPGA implementation, and characterization[J]. Journal of Lightwave Technology, 2018, 36(13): 2627-2637.

    Google Scholar

    [48] Wang F M, Liu Y F, Shi M, et al. 3.075 Gb/s underwater visible light communication utilizing hardware pre-equalizer with multiple feature points[J]. Optical Engineering, 2019, 58(5): 056117.

    Google Scholar

    [49] Lu C H, Wang J M, Li S B, et al. 60m/2.5 Gbps underwater optical wireless communication with NRZ-OOK modulation and digital nonlinear equalization[C]//2019 Conference on Lasers and Electro-Optics (CLEO).IEEE, 2019: 1-2.

    Google Scholar

    [50] Wang J M, Lu C H, Li S B, et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optics Express, 2019, 27(9): 12171-12181.

    Google Scholar

    [51] Cochenour B M, Mullen L J, Laux A E. Characterization of the beam-spread function for underwater wireless optical communications links[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4): 513-521.

    Google Scholar

    [52] Tang S J, Dong Y H, Zhang X D. Impulse response modeling for underwater wireless optical communication links[J]. IEEE Transactions on Communications, 2014, 62(1): 226-234.

    Google Scholar

    [53] Zedini E, Oubei H M, Kammoun A, et al. Unified statistical channel model for turbulence-induced fading in underwater wireless optical communication systems[J]. IEEE Transactions on Communications, 2019, 67(4): 2893-2907.

    Google Scholar

    [54] Kanungo T, Mount D M, Netanyahu N S, et al. An efficient k-means clustering algorithm: analysis and implementation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(7): 881-892.

    Google Scholar

    [55] Khan K, Rehman S U, Aziz K, et al. DBSCAN: past, present and future[C]//Proceedings of the 5th International Conference on the Applications of Digital Information and Web Technologies, Bangalore, India, 2014.

    Google Scholar

    [56] Ma J, He J, Shi J, et al. Nonlinear compensation based on k-means clustering algorithm for Nyquist PAM-4 VLC system[J]. IEEE Photonics Technology Letters, 2019, 31(12): 935-938.

    Google Scholar

    [57] Lu X Y, Wang K H, Qiao L, et al. Nonlinear compensation of multi-CAP VLC system employing clustering algorithm based perception decision[J]. IEEE Photonics Journal, 2017, 9(5): 7906509.

    Google Scholar

    [58] Lu X Y, Zhou Y J, Qiao L, et al. Amplitude jitter compensation of PAM-8 VLC system employing time-amplitude two-dimensional re-estimation base on density clustering of machine learning[J]. Physica Scripta, 2019, 94(5): 055506.

    Google Scholar

    [59] Shi M, Zhao Y H, Yu W X, et al. Enhanced performance of PAM7 MISO underwater VLC system utilizing machine learning algorithm based on DBSCAN[J]. IEEE Photonics Journal, 2019, 11(4): 7905013.

    Google Scholar

    [60] Chen C, Deng X, Yang Y B, et al. LED nonlinearity estimation and compensation in VLC systems using probabilistic Bayesian learning[J]. Applied Sciences, 2019, 9(13): 2711.

    Google Scholar

    [61] Zhang G W, Hong X J, Fei C, et al. Sparsity-aware nonlinear equalization with greedy algorithms for LED-based visible light communication systems[J]. Journal of Lightwave Technology, 2019, 37(20): 5273-5281.

    Google Scholar

    [62] Chi N, Zhao Y H, Shi M, et al. Gaussian kernel-aided deep neural network equalizer utilized in underwater PAM8 visible light communication system[J]. Optics Express, 2018, 26(20): 26700-26712.

    Google Scholar

    [63] Lu X Y, Lu C, Yu W X, et al. Memory-controlled deep LSTM neural network post-equalizer used in high-speed PAM VLC system[J]. Optics Express, 2019, 27(5): 7822-7833.

    Google Scholar

    [64] Zhao Y H, Zou P, Yu W X, et al. Two tributaries heterogeneous neural network based channel emulator for underwater visible light communication systems[J]. Optics Express, 2019, 27(16): 22532-22541.

    Google Scholar

  • Overview: Visible light communication (VLC) is a wireless optical transmission technology that utilizes visible light with a wavelength in the range of 380 nm to 790 nm. It can realize high-speed data transmission by using LED (light emitting diode) with fast response characteristics as a transmitter. VLC has offered several advantages such as license-free, cost-effective, immunity to electromagnetic interference and high security, comparing with traditional wireless communication. The biggest advantage of VLC is high speed. The existing VLC experiment can achieve a transmission rate of more than ten gigabits per second. This advantage makes VLC inevitable in the future intelligent era B5G/6G ultra-high speed ubiquitous optical networking. With such advantages, VLC has become an important scientific theme supported by governments since its inception. This paper explores the research progress of VLC around five frontier directions: material chips, high-speed systems, multiplexing networks, underwater visible light communication and applications of machine learning in VLC. Among them, material chips mainly include new light-emitting devices and light-receiving devices; high-speed systems introduce the development of VLC transmission rates; multiplexing networks are built around VLC access networks; underwater visible light communication and machine learning are the rapid and popular research directions in the field of VLC currently. High performance materials including light transmitters and receivers are indispensable for high-speed VLC. Many researchers have been concentrated on the fabrication of new LED materials. In order to further improve the transmission rate of VLC, researchers have done a lot of research from advanced modulation technology, signal pre-equalization and post-equalization, and made a series of breakthroughs. Studying how to connect VLC to an existing communication network and how to build a visible light wireless system composed of multiple visible light access points (VAPs), are the keys to the practical use of VLC. Under the intelligent era of the Internet of Everything, the underwater visible light communication is an indispensable component. Along with the constant exploration of researchers, underwater visible light communication achieves higher and higher transmission rates. However, due to the harsh underwater environment, there are few relevant theoretical models for the effects of suspended matter and particulate matter, the influence of underwater turbulence on the VLC channel. These disturbances increase the uncertainty of the performance of underwater visible light communication systems and require further research in the future. Some classical machine learning algorithms such as K-means, DBSCAN, deep learning, etc. have shown great potential and been tried by researchers to solve the problems in VLC. Looking forward to the prospect of VLC: in the intelligent era of future, VLC will become an indispensable part of communication networks with its advantages of high-speed transmission, and cooperate with other communication technologies to complement human life.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(8)

Tables(3)

Article Metrics

Article views(16014) PDF downloads(4633) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint