逆向调制无线光通信空间分集分析

王珂,徐智勇,李雪松,等. 逆向调制无线光通信空间分集分析[J]. 光电工程,2020,47(3):190701. doi: 10.12086/oee.2020.190701
引用本文: 王珂,徐智勇,李雪松,等. 逆向调制无线光通信空间分集分析[J]. 光电工程,2020,47(3):190701. doi: 10.12086/oee.2020.190701
Wang K, Xu Z Y, Li X S, et al. Analysis of space diversity method in modulating retro-reflector optical communication[J]. Opto-Electron Eng, 2020, 47(3): 190701. doi: 10.12086/oee.2020.190701
Citation: Wang K, Xu Z Y, Li X S, et al. Analysis of space diversity method in modulating retro-reflector optical communication[J]. Opto-Electron Eng, 2020, 47(3): 190701. doi: 10.12086/oee.2020.190701

逆向调制无线光通信空间分集分析

  • 基金项目:
    江苏省光通信工程技术研究中心基金资助项目(ZXF201901)
详细信息
    作者简介:
    通讯作者: 徐智勇(1972-),男,博士,教授,主要从事无线光通信的研究。E-mail:13914753638@163.com
  • 中图分类号: TN929.1; E963

Analysis of space diversity method in modulating retro-reflector optical communication

  • Fund Project: Supported by Research Center of Optical Communications Engineering & Technology, Jiangsu Province (ZXF201901)
More Information
  • 在逆向调制无线光通信系统中,大气湍流对系统的影响大于传统的无线光通信系统。本文研究了一种基于逆向端调制器分集的逆向调制无线光通信系统,以减小大气湍流对系统的影响。利用相位屏法,建立了弱湍流下的激光大气的传输模型,对比分析了逆向调制无线光通信系统逆向端逆向调制器分集和不分集分别所受到的大气湍流的影响。结果显示在相同情况下,逆向调制无线光通信系统在逆向端对逆向调制器进行分集能抑制大气湍流对系统的影响,使整个系统的闪烁指数下降。

  • Overview: Free space optical communications (FSO) has become a hot research topic in the field of optical communications. Compared with the traditional optical fiber communication, the main characteristic of wireless optical communication is to get rid of the optical fiber signal, which can be used in some special occasions. Generally speaking, the advantages of FSO are as follows: the frequency of the optical signal is high enough to avoid interference by the surrounding electromagnetic waves; Enough capacity to transmit at speeds up to a gigabit per second; It has a separate communication band and does not occupy the existing band. The traditional FSO needs to load the laser transmitting/receiving system at both ends, and the complex tracking system needs to be built, which increases the weight, volume, power consumption and technical complexity of the system. Thus they become an important factor restricting the application of FSO. The modulating retro-reflector (MRR) system can eliminate the laser transmitter and the tracking system of a terminal in the communication link. As a consequence; it greatly reduces the weight, volume and power consumption of one end of the link and effectively solves the application limitation of FSO. However, the MRR system is more vulnerable to the atmospheric turbulence than the FSO system. Although so far, there are many literatures on efficiently reducing the atmospheric turbulence, most of them are based on the traditional FSO communication system. In this paper, we build the MRR laser atmospheric propagation model under weak turbulence by using the power spectrum inversion method. Scintillation index is a physical quantity describing the degree of turbulence in the atmosphere. The numerical analyses show that under the same condition and for the diversity of the reverse modulation echo reflection link at a propagation distance of 1000 m, the scintillation index increases continuously as the distance increases, and decreases as the number of sub-sets increases. When the number of modulators is four, the scintillation index is similar to that of the ring-shaped reverse modulator. The more diverse is, the greater the cost is. Therefore, within a kilometer range, it is an ideal solution to select four inverse modulators. With simulation of the four parts diversity model, it is found that with the increase of the distance between antennas, the amplitude of the scintillation index decreases. It is also suggested that increasing the aperture of the reverse-end-modulated end-diversity antenna can also reduce the system scintillation index.

  • 加载中
  • 图 1  逆向调制无线光通信系统

    Figure 1.  MRR communication system

    图 2  逆向调制无线光通信系统仿真流程图

    Figure 2.  Simulation flow chart of MRR system

    图 3  相位屏建模原理图

    Figure 3.  Phase screen modeling schematic

    图 4  逆向端分集示意图

    Figure 4.  Schematic diagram of reverse end diversity

    图 5  逆向端分集闪烁指数对比图

    Figure 5.  Comparison diagram of scintillation index of reverse end diversity

    图 6  不同距离逆向端分集闪烁指数对比图

    Figure 6.  Comparison diagram of scintillation index of diversity at different distances

    图 7  不同孔径逆向端分集闪烁指数对比图

    Figure 7.  Comparison diagram of scintillation index with different apertures

  • [1]

    陈志晓.自由空间光通信中光强闪烁抑制的研究[D].北京: 北京邮电大学, 2013.

    Chen Z X. Research on scintillation supression techniques for free-space optical communications[D]. Beijing: Beijing University of Posts and Telecommunications, 2013.http://cdmd.cnki.com.cn/Article/CDMD-10013-1013326164.htm

    [2]

    任建迎, 孙华燕, 张来线. "猫眼"逆向调制自由空间光通信技术[J].激光与红外, 2017, 47(1): 98-102. doi: 10.3969/j.issn.1001-5078.2017.01.019

    Ren J Y, Sun H Y, Zhang L X. Free space optical communication technology based on cat-eye modulating retro-reflector[J]. Laser & Infrared, 2017, 47(1): 98-102. doi: 10.3969/j.issn.1001-5078.2017.01.019

    [3]

    张忠玉, 汪井源, 徐智勇, 等.基于散斑检测的逆向调制光通信[J].光子学报, 2017, 46(12): 1206003. http://d.old.wanfangdata.com.cn/Periodical/gzxb201712023

    Zhang Z Y, Wang J Y, Xu Z Y, et al. Modulating retro-reflector communication system based on speckle detection[J]. Acta Photonica Sinica, 2017, 46(12): 1206003. http://d.old.wanfangdata.com.cn/Periodical/gzxb201712023

    [4]

    邱灏, 汪井源, 徐智勇, 等.逆向调制光通信技术[J].军事通信技术, 2015, 36(2): 29-33. http://d.old.wanfangdata.com.cn/Periodical/jgyhw201701019

    Qiu H, Wang J Y, Xu Z Y, et al. Modulating retro-reflector optical communication technology[J]. Journal of Military Communications Technology, 2015, 39(2): 29-33. http://d.old.wanfangdata.com.cn/Periodical/jgyhw201701019

    [5]

    Avlonitis N, Charlesworth P B. Performance of retro reflector-modulated links under weak turbulence[J]. IET Optoelectronics, 2012, 6(6): 290-297. doi: 10.1049/iet-opt.2011.0098

    [6]

    Mahon R, Moore C I, Ferraro M, et al. Atmospheric turbulence effects measured along horizontal-path optical retro-reflector links[J]. Applied Optics, 2012, 51(25): 6147-6158. doi: 10.1364/AO.51.006147

    [7]

    Rabinovich W S, Mahon R, Ferraro M, et al. Reduction of scintillation in optical modulating retro-reflector links[J]. Optics Express, 2014, 22(23): 28553-28565. doi: 10.1364/OE.22.028553

    [8]

    魏宾.基于声换能器的"猫眼"逆向光调制技术及应用[D].成都: 电子科技大学, 2012.

    [9]

    徐山河, 肖沙里, 王珊, 等.基于声光调制的逆向调制光通信系统研究[J].激光技术, 2015, 39(5): 598-602. http://d.old.wanfangdata.com.cn/Periodical/jgjs201505004

    Xu S H, Xiao S L, Wang S, et al. Research on modulating retro-reflector technology of laser communication systems based on acousto-optic modulation[J]. Laser Technology, 2015, 39(5): 598-602. http://d.old.wanfangdata.com.cn/Periodical/jgjs201505004

    [10]

    潘璐, 汪井源, 徐智勇, 等.逆向调制光通信的大气湍流及孔径平均效应[J].半导体光电, 2019, 40(1): 140-144. http://d.old.wanfangdata.com.cn/Periodical/bdtgd201901028

    Pan L, Wang J Y, Xu Z Y, et al. Effect of the atmospheric turbulence and aperture mean on modulating retro-reflector optical communication[J]. Semiconductor Optoelectronics, 2019, 40(1): 140-144. http://d.old.wanfangdata.com.cn/Periodical/bdtgd201901028

    [11]

    李长盈.调制回复反射自由空间光通信系统的研究[D].杭州: 杭州电子科技大学, 2019.

    Li C Y. Research on modulated retro-reflective free space optical communication system[D]. Hangzhou: Hangzhou Dianzi University, 2019.http://cdmd.cnki.com.cn/Article/CDMD-10336-1019023020.htm

    [12]

    王惠琴, 李源, 胡秋, 等.兰州地区夜间光强起伏特性实验[J].光子学报, 2018, 47(4): 0401001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzxb201804024

    Wang H Q, Li Y, Hu Q, et al. Experimental investigation on light intensity fluctuation at night in Lanzhou area[J]. Acta Photonica Sinica, 2018, 47(4): 0401001. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gzxb201804024

    [13]

    边永昌.大气对空间光通信影响研究[D].长春: 长春理工大学, 2007.

    Bian Y C. The research on atmosphere influence of space optical communication[D]. Changchun: Changchun University of Science and Technology, 2007.http://cdmd.cnki.com.cn/Article/CDMD-10186-2007063728.htm

  • 加载中

(7)

计量
  • 文章访问数:  8065
  • PDF下载数:  2264
  • 施引文献:  0
出版历程
收稿日期:  2019-11-21
修回日期:  2020-02-14
刊出日期:  2020-03-01

目录

/

返回文章
返回