2.07 μm光纤激光在弱湍流条件下的传输特性研究

林鹏,王天枢,马万卓,等. 2.07 μm光纤激光在弱湍流条件下的传输特性研究[J]. 光电工程,2020,47(3):190588. doi: 10.12086/oee.2020.190588
引用本文: 林鹏,王天枢,马万卓,等. 2.07 μm光纤激光在弱湍流条件下的传输特性研究[J]. 光电工程,2020,47(3):190588. doi: 10.12086/oee.2020.190588
Lin P, Wang T S, Ma W Z, et al. Propagation characteristics of 2.07 μm fiber laser in weak turbulence condition[J]. Opto-Electron Eng, 2020, 47(3): 190588. doi: 10.12086/oee.2020.190588
Citation: Lin P, Wang T S, Ma W Z, et al. Propagation characteristics of 2.07 μm fiber laser in weak turbulence condition[J]. Opto-Electron Eng, 2020, 47(3): 190588. doi: 10.12086/oee.2020.190588

2.07 μm光纤激光在弱湍流条件下的传输特性研究

  • 基金项目:
    国家自然科学基金资助项目(61975021)
详细信息
    通讯作者: 王天枢(1975-),男,博士,教授,主要从事光纤激光器与空间激光通信技术的研究。E-mail:wangts@cust.edu.cn
  • 中图分类号: TN248; TN929.12

Propagation characteristics of 2.07 μm fiber laser in weak turbulence condition

  • Fund Project: Supported by National Natural Science Foundation of China (61975021)
More Information
  • 本文报道了一种2.07 μm波段可调谐主动锁模光纤激光并在室内模拟大气湍流条件下进行传输特性研究。增益介质为1.5 m长的掺钬光纤,主动锁模通过LiNbO3强度调制器在腔内引入周期强度调制实现。腔内引入非线性偏振旋转效应实现波长2058.4 nm~2078.6 nm可调谐。实验获得了稳定的基频锁模脉冲和10阶,24阶,48阶谐波锁模脉冲,对应频谱信噪比为66.79 dB、61.37 dB、54.82 dB和49.66 dB。锁模脉冲经过数字调制后在实验室内大气湍流模拟池中进行传输,分别获得了ΔT为70 ℃,140 ℃和210 ℃时三种湍流强度和背对背条件下的眼图; 与背对背条件相比,在ΔT=210 ℃时光信噪比降低了9.14 dB。

  • Overview: In recent years, 2 μm band fiber laser has attracted widespread attention with the advent of thulium-doped fiber and holmium-doped fiber because of its wide application in laser medicine, material processing and Lidar. In addition, the 2 μm laser works in atmospheric window, which lays the potential for free-space optical communication. However, the absorption peaks of many common gas molecules gather at 2 μm, such as H2O and CO2. The holmium-doped fiber can radiate laser with wavelength greater than 2 μm, which is more suitable as a gain fiber for optical communication laser source than thulium-doped fiber. There are several researches on holmium-doped fiber laser. In recent years, researchers have published a lot of research on the generation of high repetition frequency mode-locked pulse in 2 μm band. In 2017, Qin et al reported an actively mode-locked picosecond (ps) pulsed laser source with the repetition rate of 1 GHz~6 GHz, the pulse width is 60 ps, and the central wavelength is 1958.5 nm. In 2018, Zeng et al realized the repetition rate of 1.25 GHz, the pulse width is 426 fs with a central wavelength of 1941 nm. However, the study of wavelength greater than 2 μm mainly focuses on the generation of femtosecond pulse with high energy and narrow pulse width. In 2016, Sergei et al reported a passively mode-locked holmium-doped fiber laser based on nonlinear polarization rotation, the central wavelength is 2.9 μm, the pulse energy is 7.6 nJ, and a repetition rate of 43.1 MHz. In 2018, Maria et al built a dispersion-managed holmium-doped fiber laser with a graphene saturable absorber, the relationship between the spectrum of the mode-locked pulse and the total dispersion of the resonant cavity was studied, the output pulse width is 190 fs with a repetition rate of 21 MHz. It can be seen that the reports on mode-locked fiber laser with high repetition rate are still insufficient, and the 2 μm fiber laser for free-space optical communication system has not been reported.

    In this paper, we demonstrated an actively mode-locked holmium-doped fiber laser, which can be used in free-space optical communication. By adding nonlinear polarization rotation effect in the cavity to filter out super-mode noise, the stability of mode-locked pulse was improved and the wavelength tunable can be realized. The wavelength tuning range is 2058.4 nm to 2078.6 nm, the repetition rate is 1.008 GHz and the corresponding radio frequency (RF) signal-to-noise ratio can reach 49.66 dB. Moreover, the mode-locked pulse sequence was modulated by the digital signal and transmitted under three different turbulent conditions. The optical signal-to-noise ratio of eye diagram after demodulation is 9.35 dB, 6.83 dB and 4.58 dB, respectively.

  • 加载中
  • 图 1  实验结构。

    Figure 1.  Experimental structure.

    图 2  掺钬主动锁模激光光谱。

    Figure 2.  Optical spectra of actively mode-locked holmium-doped fiber laser.

    图 3  掺钬锁模激光脉冲序列。

    Figure 3.  Holmium-doped actively mode-locked pulse sequence.

    图 4  掺钬主动锁模激光频谱。

    Figure 4.  RF spectra of actively mode-locked holmium-doped fiber laser.

    图 5  锁模脉冲在湍流条件下传输眼图。

    Figure 5.  Eye patterns of mode-locked pulses in different turbulent conditions.

  • [1]

    Mou C B, Arif R, Rozhin A, et al. Passively harmonic mode locked erbium doped fiber soliton laser with carbon nanotubes based saturable absorber[J]. Optical Materials Express, 2012, 2(6): 884-890.

    [2]

    Zhao L M, Tang D Y, Cheng T H, et al. Bound states of dispersion-managed solitons in a fiber laser at near zero dispersion[J]. Applied Optics, 2007, 46(21): 4768-4773. http://d.old.wanfangdata.com.cn/OAPaper/oai_arXiv.org_0910.5802

    [3]

    Song Y F, Liang Z M, Zhang H, et al. Period-doubling and quadrupling bifurcation of vector soliton bunches in a graphene mode locked fiber laser[J]. IEEE Photonics Journal, 2017, 9(5): 4502308.

    [4]

    Du Y Q, Shu X W. Continuous-wave-induced resonant spectral sidebands in soliton fiber lasers[J]. Optics Letters, 2018, 43(2): 263-266. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ddea0e40851fe2a609ff143844164a49

    [5]

    Gao S, Kuan P W, Liu X Q, et al.Single-mode laser output in Tm3+-doped tellurium germanate double-cladding fiber[J]. IEEE Photonics Technology Letters, 2015, 27(16): 1702-1704. http://d.old.wanfangdata.com.cn/Conference/9248180

    [6]

    Moro S, Danicic A, Alic N, et al.Widely-tunable parametric short-wave infrared transmitter for CO2 trace detection[J]. Optics Express, 2011, 19(9): 8173-8178. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000003158185

    [7]

    Li J F, Luo H Y, Wang L L, et al. Mid-infrared passively switched pulsed dual wavelength Ho3+-doped fluoride fiber laser at 3 μm and 2 μm[J]. Scientific Reports, 2015, 5(2): 10770.

    [8]

    Chen H, Chen S P, Jiang Z F, et al. Versatile long cavity widely tunable pulsed Yb-doped fiber laser with up to 27655th harmonic mode locking order[J]. Optics Express, 2015, 23(2): 1308-1318.

    [9]

    Duan L N, Zhang T, Wang H S, et al. Dissipative soliton with sidebands on spectrum in an all-fibre laser[J]. Laser Physics, 2018, 28(9): 095108. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=IOP_9435735

    [10]

    Hayashi R, Yamashita S, Saida T. 16-wavelength 10-GHz actively mode-locked fiber laser with demultiplexed outputs anchored on the ITU-T grid[J]. IEEE Photonics Technology Letters, 2003, 15(12): 1692-1694. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=bf2df40e22636d39f6eda32614a7de0b

    [11]

    O'Riordan C, Connelly M J, Anandarajah P M, et al. Lyot filter based multiwavelength fiber ring laser actively mode-locked at 10 GHz using an electroabsorption modulator[J]. Optics Communications, 2008, 281(13): 3538-3541. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=23aaf5fb97f3c519be934d4bda4ba56e

    [12]

    Yao J, Yao J P, Deng Z C. Multiwavelength actively mode-locked fiber ring laser with suppressed homogeneous line broadening and reduced supermode noise[J]. Optics Express, 2004, 12(19): 4529-4534. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=Open J-Gate000001561328

    [13]

    Antipov S, Hudson D D, Fuerbach A, et al. High-power mid-infrared femtosecond fiber laser in the water vapor transmission window[J]. Optica, 2016, 3(12): 1373-1376.

    [14]

    Qin J R, Meng Y F, Gao W B, et al.2-μm repetition rate tunable (1-6 GHz) picosecond source[J]. IEEE Photonics Technology Letters, 2017, 29(24): 2234-2237.

    [15]

    Zeng J J, Akosman A E, Sander M Y. Scaling the repetition rate of thulium-doped ultrafast soliton fiber lasers to the GHz regime[J]. Optics Express, 2018, 26(19): 24687-24694.

    [16]

    Pawliszewska M, Martynkien T, Przewloka A, et al. Dispersion-managed Ho-doped fiber laser mode-locked with a graphene saturable absorber[J]. Optics Letters, 2018, 43(1): 38-41. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=182d5fceb01bf3719cf13c922f53b57e

    [17]

    Pfeiffer T, Schmuck H, Bulow H. Output power characteristics of erbium-doped fiber ring lasers[J]. IEEE Photonics Technology Letters, 1992, 4(8): 847-849. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4362b4711d867631fe6cdba10b7f7a62

  • 加载中

(5)

计量
  • 文章访问数:  6730
  • PDF下载数:  2225
  • 施引文献:  0
出版历程
收稿日期:  2019-09-29
修回日期:  2019-11-29
刊出日期:  2020-03-01

目录

/

返回文章
返回