Guo Z Y, Gong C F, Liu H J, et al. Research advances of orbital angular momentum based optical communication technology[J]. Opto-Electron Eng, 2020, 47(3): 190593. doi: 10.12086/oee.2020.190593
Citation: Guo Z Y, Gong C F, Liu H J, et al. Research advances of orbital angular momentum based optical communication technology[J]. Opto-Electron Eng, 2020, 47(3): 190593. doi: 10.12086/oee.2020.190593

Research advances of orbital angular momentum based optical communication technology

    Fund Project: Supported by National Natural Science Foundation of China (61775050, 61531010) and Fundamental Research Funds for the Central Universities of China (PA2019GDZC0098)
More Information
  • Orbital angular momentum (OAM) carried by the vortex beam provides a new dimension resource in the spatial domain of light waves, which attracting more and more researching attentions. Since the vortex beams with different OAM mode values are orthogonal to each other, the OAM mode is introduced into the field of traditional optical communication, and two new application mechanisms are derived: OAM shift keying (OAM-SK) and OAM division multiplexing (OAM-DM), which provides a potential solution for future high-speed, high-capacity and high-spectrum efficiency optical communication technologies. Based on the basic concepts and theories of OAM beam types and their generation methods, this paper will give a brief overview of typical research cases related to the application mechanisms of these two communication systems. Three key technologies have been discussed, including OAM beam multiplexing technology, OAM beam demodulation technology, and turbulence suppression technology of OAM-based optical communication. Finally, the future developing trends and prospects of OAM-based optical communication technology are analyzed and forecasted.
  • 加载中
  • [1] Wang J. Metasurfaces enabling structured light manipulation: advances and perspectives[J]. Chinese Optics Letters, 2018, 16(5): 050006. doi: 10.3788/COL201816.050006

    CrossRef Google Scholar

    [2] Yi A L, Yan L S, Pan Y, et al. Transmission of multi-dimensional signals for next generation optical communication systems[J]. Optics Communications, 2018, 408: 42–52. doi: 10.1016/j.optcom.2017.07.046

    CrossRef Google Scholar

    [3] Winzer P J. Modulation and multiplexing in optical communications[C]//Conference on Lasers & Electro-Optics, Baltimore, Maryland United States, 2009.

    Google Scholar

    [4] Zhou X, Yu J J. Multi-level, multi-dimensional coding for high-speed and high-spectral-efficiency optical transmission[J]. Journal of Lightwave Technology, 2009, 27(16): 3641–3653. doi: 10.1109/JLT.2009.2022765

    CrossRef Google Scholar

    [5] Richter T, Palushani E, Schmidt-Langhorst C, et al. Transmission of single-channel 16-QAM data signals at terabaud symbol rates[J]. Journal of Lightwave Technology, 2012, 30(4): 504–511. doi: 10.1109/JLT.2011.2174029

    CrossRef Google Scholar

    [6] Gnauck A H, Winzer P J, Chandrasekhar S, et al. Spectrally efficient long-haul WDM transmission using 224-Gb/s polarization-multiplexed 16-QAM[J]. Journal of Lightwave Technology, 2011, 29(4): 373–377. doi: 10.1109/JLT.2010.2080259

    CrossRef Google Scholar

    [7] Zhou X, Yu J J, Huang M F, et al. 64-Tb/s, 8 b/s/Hz, PDM-36QAM transmission over 320 km using both pre- and post-transmission digital signal processing[J]. Journal of Lightwave Technology, 2011, 29(4): 571–577. doi: 10.1109/JLT.2011.2105856

    CrossRef Google Scholar

    [8] Winzer P J. Making spatial multiplexing a reality[J]. Nature Photonics, 2014, 8(5): 345–348. doi: 10.1038/nphoton.2014.58

    CrossRef Google Scholar

    [9] Willner A E, Huang H, Yan Y, et al. Optical communications using orbital angular momentum beams[J]. Advances in Optics and Photonics, 2015, 7(1): 66–106. doi: 10.1364/AOP.7.000066

    CrossRef Google Scholar

    [10] Guo Z Y, Qu S L, Liu S T. Generating optical vortex with computer-generated hologram fabricated inside glass by femtosecond laser pulses[J]. Optics Communications, 2007, 273(1): 286–289.

    Google Scholar

    [11] Guo Z Y, Qu S L, Sun Z H, et al. Superposition of orbital angular momentum of photons by a combined computer-generated hologram fabricated in silica glass with femtosecond laser pulses[J]. Chinese Physics B, 2008, 17(11): 4199–4203. doi: 10.1088/1674-1056/17/11/040

    CrossRef Google Scholar

    [12] Ran L L, Qu S L, Guo Z Y. Surface mico-structures on amorphous alloys induced by vortex femtosecond laser pulses[J]. Chinese physics B, 2010, 19(3): 034204. doi: 10.1088/1674-1056/19/3/034204

    CrossRef Google Scholar

    [13] Li Y, Guo Z Y, Qu S L. Living cell manipulation in a microfluidic device by femtosecond optical tweezers[J]. Optics and Lasers in Engineering, 2014, 55: 150–154. doi: 10.1016/j.optlaseng.2013.11.001

    CrossRef Google Scholar

    [14] Zhu L, Guo Z Y, Xu Q, et al. Calculating the torque of the optical vortex tweezer to the ellipsoidal microparticles[J]. Optics Communications, 2015, 354: 34–39. doi: 10.1016/j.optcom.2015.05.062

    CrossRef Google Scholar

    [15] Liu C X, Guo Z Y, Li Y, et al. Manipulating ellipsoidal micro-particles by femtosecond vortex tweezers[J]. Journal of Optics, 2015, 17(3): 035402. doi: 10.1088/2040-8978/17/3/035402

    CrossRef Google Scholar

    [16] Nye J F, Berry M V. Dislocations in wave trains[J]. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences, 1974, 336(1605): 165–190. doi: 10.1098/rspa.1974.0012

    CrossRef Google Scholar

    [17] Berry M V, Nye J F, Wright F J. The elliptic umbilic diffraction catastrophe[J]. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1979, 291(1382): 453–484. doi: 10.1098/rsta.1979.0039

    CrossRef Google Scholar

    [18] Allen L, Beijersbergen M W, Spreeuw R J C, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 1992, 45(11): 8185–8189. doi: 10.1103/PhysRevA.45.8185

    CrossRef Google Scholar

    [19] 袁小聪, 贾平, 雷霆, 等.光学旋涡与轨道角动量光通信[J].深圳大学学报(理工版), 2014, 31(4): 331–346.

    Google Scholar

    Yuan X C, Jia P, Lei T, et al. Optical vortices and optical communication with orbital angular momentum[J]. Journal of Shenzhen University (Science & Engineering), 2014, 31(4): 331–346.

    Google Scholar

    [20] Gibson G, Courtial J, Padgett M J, et al. Free-space information transfer using light beams carrying orbital angular momentum[J]. Optics Express, 2004, 12(22): 5448–5456. doi: 10.1364/OPEX.12.005448

    CrossRef Google Scholar

    [21] Liu Y D, Gao C Q, Gao M W, et al. Superposition and detection of two helical beams for optical orbital angular momentum communication[J]. Optics Communications, 2008, 281(14): 3636–3639. doi: 10.1016/j.optcom.2008.03.049

    CrossRef Google Scholar

    [22] Krenn M, Fickler R, Fink M, et al. Communication with spatially modulated light through turbulent air across Vienna[J]. New Journal of Physics, 2014, 16(11): 113028. doi: 10.1088/1367-2630/16/11/113028

    CrossRef Google Scholar

    [23] Krenn M, Handsteiner J, Fink M, et al. Twisted light transmission over 143 km[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13648–13653. doi: 10.1073/pnas.1612023113

    CrossRef Google Scholar

    [24] Willner A J, Ren Y X, Xie G D, et al. Experimental demonstration of 20 Gbit/s data encoding and 2 ns channel hopping using orbital angular momentum modes[J]. Optics Letters, 2015, 40(24): 5810–5813. doi: 10.1364/OL.40.005810

    CrossRef Google Scholar

    [25] Li S H, Wang J. Experimental demonstration of optical interconnects exploiting orbital angular momentum array[J]. Optics Express, 2017, 25(18): 21537–21547. doi: 10.1364/OE.25.021537

    CrossRef Google Scholar

    [26] Fu S Y, Zhai Y W, Yin C, et al. Mixed orbital angular momentum amplitude shift keying through a single hologram[J]. OSA Continuum, 2018, 1(2): 295–308. doi: 10.1364/OSAC.1.000295

    CrossRef Google Scholar

    [27] Kai C H, Huang P, Shen F, et al. Orbital angular momentum shift keying based optical communication system[J]. IEEE Photonics Journal, 2017, 9(2): 7902510.

    Google Scholar

    [28] Du J, Wang J. High-dimensional structured light coding/decoding for free-space optical communications free of obstructions[J]. Optics Letters, 2015, 40(21): 4827–4830. doi: 10.1364/OL.40.004827

    CrossRef Google Scholar

    [29] Li X K, Li Y, Zeng X N, et al. Perfect optical vortex array for optical communication based on orbital angular momentum shift keying[J]. Journal of Optics, 2018, 20(12): 125604. doi: 10.1088/2040-8986/aaef28

    CrossRef Google Scholar

    [30] Awaji Y, Wada N, Toda Y. Demonstration of spatial mode division multiplexing using Laguerre-Gaussian mode beam in telecom-wavelength[C]//2010 23rd Annual Meeting of the IEEE Photonics Society, Denver, CO, USA, 2010: 551–552.

    Google Scholar

    [31] Wang J, Yang J Y, Fazal I M, et al. Demonstration of 12.8-bit/s/Hz spectral efficiency using 16-QAM signals over multiple orbital-angular-momentum modes[C]//2011 37th European Conference and Exhibition on Optical Communication, Geneva, Switzerland, 2011: 1–3.

    Google Scholar

    [32] Wang J, Yang J Y, Fazal I M, et al. 25.6-bit/s/Hz spectral efficiency using 16-QAM signals over pol-muxed multiple orbital-angular-momentum modes[C]//IEEE Photonic Society 24th Annual Meeting, Arlington, VA, USA, 2011: 587–588.

    Google Scholar

    [33] Fazal I M, Wang J, Yang J Y, et al. Demonstration of 2-Tbit/s data link using orthogonal orbital-angular-momentum modes and WDM[C]//Frontiers in Optics 2011, San Jose, California United States, 2011.

    Google Scholar

    [34] Wang J, Yang J Y, Fazal I M, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing[J]. Nature Photonics, 2012, 6(7): 488–496. doi: 10.1038/nphoton.2012.138

    CrossRef Google Scholar

    [35] Huang H, Xie G D, Yan Y, et al. 100 Tbit/s free-space data link using orbital angular momentum mode division multiplexing combined with wavelength division multiplexing[C]//2013 Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC), Anaheim, CA, USA, 2013: 1–3.

    Google Scholar

    [36] Huang H, Xie G D, Yan Y, et al. 100 Tbit/s free-space data link enabled by three-dimensional multiplexing of orbital angular momentum, polarization, and wavelength[J]. Optics Letters, 2014, 39(2): 197–200.

    Google Scholar

    [37] Wang J, Li S H, Li C, et al. Ultra-high 230-bit/s/Hz spectral efficiency using OFDM/OQAM 64-QAM signals over pol-muxed 22 orbital angular momentum (OAM) modes[C]//Optical Fiber Communications Conference & Exhibition, San Francisco, CA, USA, 2014: 1–3.

    Google Scholar

    [38] Wang J, Li S H, Luo M, et al. N-dimentional multiplexing link with 1.036-Pbit/s transmission capacity and 112.6-bit/s/Hz spectral efficiency using OFDM-8QAM signals over 368 WDM pol-muxed 26 OAM modes[C]//2014 the European Conference on Optical Communication, Cannes, France, 2014: 1–3.

    Google Scholar

    [39] Wang J, Liu J, Lv X, et al. Ultra-high 435-bit/s/Hz spectral efficiency using N-dimentional multiplexing and modulation link with pol-muxed 52 orbital angular momentum (OAM) modes carrying Nyquist 32-QAM signals[C]//2015 European Conference on Optical Communication (ECOC), Valencia, Spain, 2015: 1–3.

    Google Scholar

    [40] Lei T, Zhang M, Li Y R, et al. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings[J]. Light: Science & Applications, 2015, 4(3): e257. doi: 10.1038/lsa.2015.30

    CrossRef Google Scholar

    [41] Zhu Y X, Zou K H, Zheng Z N, et al. 1 λ×1.44 Tb/s free-space IM-DD transmission employing OAM multiplexing and PDM[J]. Optics Express, 2016, 24(4): 3967–3980. doi: 10.1364/OE.24.003967

    CrossRef Google Scholar

    [42] Li S H, Wang J. Multi-orbital-angular-momentum multi-ring fiber for high-density space-division multiplexing[J]. IEEE Photonics Journal, 2013, 5(5): 7101007. doi: 10.1109/JPHOT.2013.2272778

    CrossRef Google Scholar

    [43] Yue Y, Yan Y, Ahmed N, et al. Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber[J]. IEEE Photonics Journal, 2012, 4(2): 535–543. doi: 10.1109/JPHOT.2012.2192474

    CrossRef Google Scholar

    [44] Li S H, Wang J. A compact trench-assisted multi-orbital-angular-momentum multi-ring fiber for ultrahigh-density space-division multiplexing (19 rings×22 modes)[J]. Scientific Reports, 2014, 4: 3853. doi: 10.1038/srep03853

    CrossRef Google Scholar

    [45] Baghdady J, Miller K, Morgan K, et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing[J]. Optics Express, 2016, 24(9): 9794–9805. doi: 10.1364/OE.24.009794

    CrossRef Google Scholar

    [46] Ren Y X, Li L, Wang Z, et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications[J]. Scientific Reports, 2016, 6: 33306. doi: 10.1038/srep33306

    CrossRef Google Scholar

    [47] Wang W, Wang P, Cao T, et al. Performance investigation of underwater wireless optical communication system using M-ary OAMSK modulation over oceanic turbulence[J]. IEEE Photonics Journal, 2017, 9(5): 7905315. doi: 10.1109/JPHOT.2017.2727505

    CrossRef Google Scholar

    [48] Zhao Y F, Wang A D, Zhu L, et al. Performance evaluation of underwater optical communications using spatial modes subjected to bubbles and obstructions[J]. Optics Letters, 2017, 42(22): 4699–4702. doi: 10.1364/OL.42.004699

    CrossRef Google Scholar

    [49] Zhao Y F, Xu J, Wang A D, et al. Demonstration of data-carrying orbital angular momentum-based underwater wireless optical multicasting link[J]. Optics Express, 2017, 25(23): 28743–28751. doi: 10.1364/OE.25.028743

    CrossRef Google Scholar

    [50] Wang A D, Zhu L, Zhao Y F, et al. Adaptive water-air-water data information transfer using orbital angular momentum[J]. Optics Express, 2018, 26(7): 8669–8678. doi: 10.1364/OE.26.008669

    CrossRef Google Scholar

    [51] Gori F, Guattari G, Padovani C. Bessel-gauss beams[J]. Optics Communications, 1987, 64(6): 491–495. doi: 10.1016/0030-4018(87)90276-8

    CrossRef Google Scholar

    [52] Zhu L, Wang J. Demonstration of obstruction-free data-carrying N-fold Bessel modes multicasting from a single Gaussian mode[J]. Optics Letters, 2015, 40(23): 5463–5466. doi: 10.1364/OL.40.005463

    CrossRef Google Scholar

    [53] Ahmed N, Lavery M P, Huang H, et al. Experimental demonstration of obstruction-tolerant free-space transmission of two 50-Gbaud QPSK data channels using Bessel beams carrying orbital angular momentum[C]//2014 The European Conference on Optical Communication (ECOC), Cannes, France, 2014: 1–3.

    Google Scholar

    [54] Li S H, Wang J. Adaptive free-space optical communications through turbulence using self-healing Bessel beams[J]. Scientific Reports, 2017, 7: 43233. doi: 10.1038/srep43233

    CrossRef Google Scholar

    [55] Mphuthi N, Gailele L, Litvin I, et al. Free-space optical communication link with shape-invariant orbital angular momentum Bessel beams[J]. Applied Optics, 2019, 58(16): 4258–4264. doi: 10.1364/AO.58.004258

    CrossRef Google Scholar

    [56] Ostrovsky A S, Rickenstorff-Parrao C, Arrizón V. Generation of the "perfect" optical vortex using a liquid-crystal spatial light modulator[J]. Optics Letters, 2013, 38(4): 534–536. doi: 10.1364/OL.38.000534

    CrossRef Google Scholar

    [57] 王亚军, 李新忠, 李贺贺, 等.完美涡旋光场的研究进展[J].激光与光电子学进展, 2017, 54(9): 090007.

    Google Scholar

    Wang Y J, Li X Z, Li H H, et al. Research progress of perfect vortex field[J]. Laser & Optoelectronics Progress, 2017, 54(9): 090007.

    Google Scholar

    [58] Vaity P, Rusch L. Perfect vortex beam: Fourier transformation of a Bessel beam[J]. Optics Letters, 2015, 40(4): 597–600. doi: 10.1364/OL.40.000597

    CrossRef Google Scholar

    [59] Zhu F Q, Huang S J, Shao W, et al. Free-space optical communication link using perfect vortex beams carrying orbital angular momentum (OAM)[J]. Optics Communications, 2017, 396: 50–57. doi: 10.1016/j.optcom.2017.03.023

    CrossRef Google Scholar

    [60] Wang L, Jiang X C, Zou L, et al. Two-dimensional multiplexing scheme both with ring radius and topological charge of perfect optical vortex beam[J]. Journal of Modern Optics, 2019, 66(1): 87–92. doi: 10.1080/09500340.2018.1512669

    CrossRef Google Scholar

    [61] Zhan Q W. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 2009, 1(1): 1–57. doi: 10.1364/AOP.1.000001

    CrossRef Google Scholar

    [62] 付时尧, 高春清.矢量涡旋光束的模式连续可调生成技术(特邀论文)[J].光学学报, 2019, 39(1): 0126014.

    Google Scholar

    Fu S Y, Gao C Q. Selective generation of arbitrary vectorial vortex beams (Invited Paper)[J]. Acta Optica Sinica, 2019, 39(1): 0126014.

    Google Scholar

    [63] Ndagano B, Nape I, Cox M A, et al. Creation and detection of vector vortex modes for classical and quantum communication[J]. Journal of Lightwave Technology, 2018, 36(2): 292–301. doi: 10.1109/JLT.2017.2766760

    CrossRef Google Scholar

    [64] Lavery M P J, Milione G, Nguyen T A, et al. Space division multiplexing in a basis of vector modes[C]//2014 The European Conference on Optical Communication (ECOC), Cannes, France, 2014: 1–3.

    Google Scholar

    [65] Zhao Y F, Wang J. High-base vector beam encoding/decoding for visible-light communications[J]. Optics Letters, 2015, 40(21): 4843–4846. doi: 10.1364/OL.40.004843

    CrossRef Google Scholar

    [66] Zhang J B, Li F, Li J P, et al. 120 Gbit/s 2×2 vector-modes-division-multiplexing DD-OFDM-32QAM free-space transmission[J]. IEEE Photonics Journal, 2016, 8(6): 7907008. doi: 10.1109/JPHOT.2016.2622859

    CrossRef Google Scholar

    [67] Li P, Zhang Y, Liu S, et al. Generation of perfect vectorial vortex beams[J]. Optics Letters, 2016, 41(10): 2205–2208. doi: 10.1364/OL.41.002205

    CrossRef Google Scholar

    [68] Fu S Y, Wang T L, Zhang Z Y, et al. Selective acquisition of multiple states on hybrid Poincare sphere[J]. Applied Physics Letters, 2017, 110(19): 191102. doi: 10.1063/1.4983284

    CrossRef Google Scholar

    [69] Okida M, Omatsu T, Itoh M, et al. Direct generation of high power Laguerre-Gaussian output from a diode-pumped Nd:YVO 4 1.3-μm bounce laser[J]. Optics Express, 2007, 15(12): 7616–7622. doi: 10.1364/OE.15.007616

    CrossRef Google Scholar

    [70] Lee A J, Omatsu T, Pask H M. Direct generation of a first-Stokes vortex laser beam from a self-Raman laser[J]. Optics Express, 2013, 21(10): 12401–12409. doi: 10.1364/OE.21.012401

    CrossRef Google Scholar

    [71] Lee A J, Zhang C Y, Omatsu T, et al. An intracavity, frequency-doubled self-Raman vortex laser[J]. Optics Express, 2014, 22(5): 5400–5409. doi: 10.1364/OE.22.005400

    CrossRef Google Scholar

    [72] Miao P, Zhang Z F, Sun J B, et al. Orbital angular momentum microlaser[J]. Science, 2016, 353(6298): 464–467. doi: 10.1126/science.aaf8533

    CrossRef Google Scholar

    [73] Wang S, Zhang S L, Qiao H C, et al. Direct generation of vortex beams from a double-end polarized pumped Yb:KYW laser[J]. Optics Express, 2018, 26(21): 26925–26932. doi: 10.1364/OE.26.026925

    CrossRef Google Scholar

    [74] Beijersbergen M W, Coerwinkel R P C, Kristensen M, et al. Helical-wavefront laser beams produced with a spiral phaseplate[J]. Optics Communications, 1994, 112(5–6): 321–327. doi: 10.1016/0030-4018(94)90638-6

    CrossRef Google Scholar

    [75] Turnbull G A, Robertson D A, Smith G M, et al. The generation of free-space Laguerre-Gaussian modes at millimetre-wave frequencies by use of a spiral phaseplate[J]. Optics Communications, 1996, 127(4–6): 183–188. doi: 10.1016/0030-4018(96)00070-3

    CrossRef Google Scholar

    [76] Oemrawsingh S S R, Van Houwelingen J A W, Eliel E R, et al. Production and characterization of spiral phase plates for optical wavelengths[J]. Applied Optics, 2004, 43(3): 688–694. doi: 10.1364/AO.43.000688

    CrossRef Google Scholar

    [77] Sueda K, Miyaji G, Miyanaga N, et al. Laguerre-Gaussian beam generated with a multilevel spiral phase plate for high intensity laser pulses[J]. Optics Express, 2004, 12(15): 3548–3553. doi: 10.1364/OPEX.12.003548

    CrossRef Google Scholar

    [78] Massari M, Ruffato G, Gintoli M, et al. Fabrication and characterization of high-quality spiral phase plates for optical applications[J]. Applied Optics, 2015, 54(13): 4077–4083. doi: 10.1364/AO.54.004077

    CrossRef Google Scholar

    [79] Rafighdoost J, Sabatyan A. Spirally phase-shifted zone plate for generating and manipulating multiple spiral beams[J]. Journal of the Optical Society of America B, 2017, 34(3): 608–612. doi: 10.1364/JOSAB.34.000608

    CrossRef Google Scholar

    [80] Lin J, Yuan X C, Tao S H, et al. Synthesis of multiple collinear helical modes generated by a phase-only element[J]. Journal of the Optical Society of America A, 2006, 23(5): 1214–1218. doi: 10.1364/JOSAA.23.001214

    CrossRef Google Scholar

    [81] Wei S B, Wang D P, Lin J, et al. Demonstration of orbital angular momentum channel healing using a Fabry-Pérot cavity[J]. Opto-Electronic Advances, 2018, 1(5): 180006. doi: 10.29026/oea.2018.180006

    CrossRef Google Scholar

    [82] 柯熙政, 薛璞.轨道角动量叠加态的产生及其检验[J].红外与激光工程, 2018, 47(4): 417007.

    Google Scholar

    Ke X Z, Xue P. Generation of Orbital Angular Momentum superpositions and its test[J]. Infrared and Laser Engineering, 2018, 47(4): 417007.

    Google Scholar

    [83] Mirhosseini M, Magaña-Loaiza O S, Chen C C, et al. Rapid generation of light beams carrying orbital angular momentum[J]. Optics Express, 2013, 21(25): 30196–30203. doi: 10.1364/OE.21.030196

    CrossRef Google Scholar

    [84] Heckenberg N R, McDuff R, Smith C P, et al. Generation of optical phase singularities by computer-generated holograms[J]. Optics Letters, 1992, 17(3): 221–223. doi: 10.1364/ol.17.000221

    CrossRef Google Scholar

    [85] Beijersbergen M W, Allen L, Van der Veen H E L O, et al. Astigmatic laser mode converters and transfer of orbital angular momentum[J]. Optics Communications, 1993, 96(1–3): 123–132. doi: 10.1016/0030-4018(93)90535-D

    CrossRef Google Scholar

    [86] Marrucci L, Manzo C, Paparo D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 2006, 96(16): 163905. doi: 10.1103/PhysRevLett.96.163905

    CrossRef Google Scholar

    [87] Karimi E, Piccirillo B, Nagali E, et al. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates[J]. Applied Physics Letters, 2009, 94(23): 231124. doi: 10.1063/1.3154549

    CrossRef Google Scholar

    [88] Cardano F, Karimi E, Slussarenko S, et al. Polarization pattern of vector vortex beams generated by q-plates with different topological charges[J]. Applied Optics, 2012, 51(10): C1–C6. doi: 10.1364/AO.51.0000C1

    CrossRef Google Scholar

    [89] Marrucci L, Karimi E, Slussarenko S, et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications[J]. Journal of Optics, 2011, 13(6): 064001. doi: 10.1088/2040-8978/13/6/064001

    CrossRef Google Scholar

    [90] Devlin R C, Ambrosio A, Rubin N A, et al. Arbitrary spin-to–orbital angular momentum conversion of light[J]. Science, 2017, 358(6365): 896–901. doi: 10.1126/science.aao5392

    CrossRef Google Scholar

    [91] 郭忠义, 汪彦哲, 郑群, 等.涡旋电磁波天线技术研究进展[J].雷达学报, 2019, 8(5): 631–655.

    Google Scholar

    Guo Z Y, Wang Y Z, Zheng Q, et al. Advances of research on antenna technology of vortex electromagnetic waves[J]. Journal of Radars, 2019, 8(5): 631–655.

    Google Scholar

    [92] Karimi E, Schulz S A, De Leon I, et al. Generating optical orbital angular momentum at visible wavelengths using a plasmonic metasurface[J]. Light: Science & Applications, 2014, 3(5): e167. doi: 10.1038/lsa.2014.48

    CrossRef Google Scholar

    [93] Du J, Wang J. Design of on-chip N-fold orbital angular momentum multicasting using V-shaped antenna array[J]. Scientific Reports, 2015, 5: 9662. doi: 10.1038/srep09662

    CrossRef Google Scholar

    [94] Du J, Wang J. Dielectric metasurfaces enabling twisted light generation/detection/(de) multiplexing for data information transfer[J]. Optics Express, 2018, 26(10): 13183–13194. doi: 10.1364/OE.26.013183

    CrossRef Google Scholar

    [95] Zhao Z, Wang J, Li S H, et al. Metamaterials-based broadband generation of orbital angular momentum carrying vector beams[J]. Optics Letters, 2013, 38(6): 932–934. doi: 10.1364/OL.38.000932

    CrossRef Google Scholar

    [96] Wang W, Li Y, Guo Z Y, et al. Ultra-thin optical vortex phase plate based on the metasurface and the angular momentum transformation[J]. Journal of Optics, 2015, 17(4): 045102. doi: 10.1088/2040-8978/17/4/045102

    CrossRef Google Scholar

    [97] Zhao Y F, Du J, Zhang J R, et al. Generating structured light with phase helix and intensity helix using reflection-enhanced plasmonic metasurface at 2 μm[J]. Applied Physics Letters, 2018, 112(17): 171103. doi: 10.1063/1.5024433

    CrossRef Google Scholar

    [98] Ma Z J, Li Y, Li Y, et al. All-dielectric planar chiral metasurface with gradient geometric phase[J]. Optics Express, 2018, 26(5): 6067–6078. doi: 10.1364/OE.26.006067

    CrossRef Google Scholar

    [99] Inavalli V V G K, Viswanathan N K. Switchable vector vortex beam generation using an optical fiber[J]. Optics Communications, 2010, 283(6): 861–864. doi: 10.1016/j.optcom.2009.10.112

    CrossRef Google Scholar

    [100] Yan Y, Wang J, Zhang L, et al. Fiber coupler for generating orbital angular momentum modes[J]. Optics Letters, 2011, 36(21): 4269–4271. doi: 10.1364/OL.36.004269

    CrossRef Google Scholar

    [101] Yan Y, Zhang L, Wang J, et al. Fiber structure to convert a Gaussian beam to higher-order optical orbital angular momentum modes[J]. Optics Letters, 2012, 37(16): 3294–3296. doi: 10.1364/OL.37.003294

    CrossRef Google Scholar

    [102] Yan Y, Yue Y, Huang H, et al. Efficient generation and multiplexing of optical orbital angular momentum modes in a ring fiber by using multiple coherent inputs[J]. Optics Letters, 2012, 37(17): 3645–3647. doi: 10.1364/OL.37.003645

    CrossRef Google Scholar

    [103] Fang L, Wang J. Flexible generation/conversion/exchange of fiber-guided orbital angular momentum modes using helical gratings[J]. Optics Letters, 2015, 40(17): 4010–4013. doi: 10.1364/OL.40.004010

    CrossRef Google Scholar

    [104] Li S H, Mo Q, Hu X, et al. Controllable all-fiber orbital angular momentum mode converter[J]. Optics Letters, 2015, 40(18): 4376–4379. doi: 10.1364/OL.40.004376

    CrossRef Google Scholar

    [105] 柯熙政, 葛甜.利用少模光纤产生涡旋光的实验[J].中国激光, 2017, 44(11): 176–183.

    Google Scholar

    Ke X Z, Ge T. Experiment on generation of vortex light with few-mode fiber[J]. Chinese Journal of Lasers, 2017, 44(11): 176–183.

    Google Scholar

    [106] Cai X, Wang J, Strain M J, et al. Integrated compact optical vortex beam emitters[J]. Science, 2012, 338(6105): 363–366. doi: 10.1126/science.1226528

    CrossRef Google Scholar

    [107] Guan B B, Scott R P, Qin C, et al. Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit[J]. Optics Express, 2014, 22(1): 145–156. doi: 10.1364/OE.22.000145

    CrossRef Google Scholar

    [108] Su T, Scott R P, Djordjevic S S, et al. Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices[J]. Optics Express, 2012, 20(9): 9396–9402. doi: 10.1364/OE.20.009396

    CrossRef Google Scholar

    [109] Xiao Q S, Klitis C, Li S M, et al. Generation of photonic orbital angular momentum superposition states using vortex beam emitters with superimposed gratings[J]. Optics Express, 2016, 24(4): 3168–3176. doi: 10.1364/OE.24.003168

    CrossRef Google Scholar

    [110] Zheng S, Wang J. On-chip orbital angular momentum modes generator and (de) multiplexer based on trench silicon waveguides[J]. Optics Express, 2017, 25(15): 18492–18501. doi: 10.1364/OE.25.018492

    CrossRef Google Scholar

    [111] Zhou N, Zheng S, Cao X P, et al. Generating and synthesizing ultrabroadband twisted light using a compact silicon chip[J]. Optics Letters, 2018, 43(13): 3140–3143. doi: 10.1364/OL.43.003140

    CrossRef Google Scholar

    [112] Yan Y, Xie G D, Lavery M P J, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing[J]. Nature Communications, 2014, 5: 4876. doi: 10.1038/ncomms5876

    CrossRef Google Scholar

    [113] Fontaine N K, Doerr C R, Buhl L L. Efficient multiplexing and demultiplexing of free-space orbital angular momentum using photonic integrated circuits[C]//OFC/NFOEC, Los Angeles, CA, USA, 2012: 1–3.

    Google Scholar

    [114] 刘永军, 宣丽, 胡立发, 等.高精度纯相位液晶空间光调制器的研究[J].光学学报, 2005, 25(12): 1682–1686. doi: 10.3321/j.issn:0253-2239.2005.12.019

    CrossRef Google Scholar

    Liu Y J, Xuan L, Hu L F, et al. Investigation on the liquid crystal spatial light modulator with high precision and pure phase[J]. Acta Optica Sinica, 2005, 25(12): 1682–1686. doi: 10.3321/j.issn:0253-2239.2005.12.019

    CrossRef Google Scholar

    [115] Zhu L, Wang J. Simultaneous generation of multiple orbital angular momentum (OAM) modes using a single phase-only element[J]. Optics Express, 2015, 23(20): 26221–26233. doi: 10.1364/OE.23.026221

    CrossRef Google Scholar

    [116] Yan Y, Yue Y, Huang H, et al. Multicasting in a spatial division multiplexing system based on optical orbital angular momentum[J]. Optics Letters, 2013, 38(19): 3930–3933. doi: 10.1364/OL.38.003930

    CrossRef Google Scholar

    [117] Kai C H, Feng Z K, Dedo M I, et al. The performances of different OAM encoding systems[J]. Optics Communications, 2019, 430: 151–157. doi: 10.1016/j.optcom.2018.08.023

    CrossRef Google Scholar

    [118] Zhang N, Davis J A, Moreno I, et al. Analysis of multilevel spiral phase plates using a Dammann vortex sensing grating[J]. Optics Express, 2010, 18(25): 25987–25992. doi: 10.1364/OE.18.025987

    CrossRef Google Scholar

    [119] Dai K J, Gao C Q, Zhong L, et al. Measuring OAM states of light beams with gradually-changing-period gratings[J]. Optics Letters, 2015, 40(4): 562–565.

    Google Scholar

    [120] Zheng S, Wang J. Measuring orbital angular momentum (OAM) states of vortex beams with annular gratings[J]. Scientific Reports, 2017, 7: 40781. doi: 10.1038/srep40781

    CrossRef Google Scholar

    [121] Leach J, Padgett M J, Barnett S M, et al. Measuring the orbital angular momentum of a single photon[J]. Physical Review Letters, 2002, 88: 257901. doi: 10.1103/PhysRevLett.88.257901

    CrossRef Google Scholar

    [122] Sztul H I, Alfano R R. Double-slit interference with Laguerre-Gaussian beams[J]. Optics Letters, 2006, 31(7): 999–1001. doi: 10.1364/OL.31.000999

    CrossRef Google Scholar

    [123] 柯熙政, 胥俊宇.涡旋光束轨道角动量干涉及检测的研究[J].中国激光, 2016, 43(9): 192–197.

    Google Scholar

    Ke X Z, Xu J Y. Interference and detection of vortex beams with orbital angular momentum[J]. Chinese Journal of Lasers, 2016, 43(9): 192–197.

    Google Scholar

    [124] Berkhout G C G, Beijersbergen M W. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects[J]. Physical Review Letters, 2008, 101(10): 100801. doi: 10.1103/PhysRevLett.101.100801

    CrossRef Google Scholar

    [125] Guo C S, Lu L L, Wang H T. Characterizing topological charge of optical vortices by using an annular aperture[J]. Optics Letters, 2009, 34(23): 3686–3688. doi: 10.1364/OL.34.003686

    CrossRef Google Scholar

    [126] Berkhout G C G, Beijersbergen M W. Measuring optical vortices in a speckle pattern using a multi-pinhole interferometer[J]. Optics Express, 2010, 18(13): 13836–13841. doi: 10.1364/OE.18.013836

    CrossRef Google Scholar

    [127] Mesquita P H F, Jesus-Silva A J, Fonseca E J S, et al. Engineering a square truncated lattice with light's orbital angular momentum[J]. Optics Express, 2011, 19(21): 20616–20621. doi: 10.1364/OE.19.020616

    CrossRef Google Scholar

    [128] Ferreira Q S, Jesus-Silva A J, Fonseca E J S, et al. Fraunhofer diffraction of light with orbital angular momentum by a slit[J]. Optics Letters, 2011, 36(16): 3106–3108. doi: 10.1364/OL.36.003106

    CrossRef Google Scholar

    [129] Berkhout G C G, Lavery M P J, Courtial J, et al. Efficient sorting of orbital angular momentum states of light[J]. Physical Review Letters, 2010, 105(15): 153601. doi: 10.1103/PhysRevLett.105.153601

    CrossRef Google Scholar

    [130] Mirhosseini M, Malik M, Shi Z M, et al. Efficient separation of the orbital angular momentum eigenstates of light[J]. Nature Communications, 2013, 4(1): 2781. doi: 10.1038/ncomms3781

    CrossRef Google Scholar

    [131] Wen Y H, Chremmos I, Chen Y J, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes[J]. Physical Review Letters, 2018, 120(19): 193904. doi: 10.1103/PhysRevLett.120.193904

    CrossRef Google Scholar

    [132] 柯熙政, 谢炎辰, 张颖.涡旋光束轨道角动量检测及其性能改善[J].光学学报, 2019, 39(1): 0126017.

    Google Scholar

    Ke X Z, Xie Y C, Zhang Y. Orbital angular momentum measurement of vortex beam and its performance improvement[J]. Acta Optica Sinica, 2019, 39(1): 0126017.

    Google Scholar

    [133] Feng Z K, Wang X Y, Dedo M I, et al. High-density Orbital Angular Momentum mode analyzer based on the mode converters combining with the modified Mach–Zehnder interferometer[J]. Optics Communications, 2019, 435: 441–448. doi: 10.1016/j.optcom.2018.11.068

    CrossRef Google Scholar

    [134] Mamadou D, Shen F, Dedo M, et al. High-efficiency sorting and measurement of orbital angular momentum modes based on the March–Zehnder interferometer and complex phase gratings[J]. Measurement Science and Technology, 2019, 30(7): 075201. doi: 10.1088/1361-6501/ab0e62

    CrossRef Google Scholar

    [135] Zhou J, Zhang W H, Chen L X. Experimental detection of high-order or fractional orbital angular momentum of light based on a robust mode converter[J]. Applied Physics Letters, 2016, 108(11): 111108. doi: 10.1063/1.4944463

    CrossRef Google Scholar

    [136] Zhou H L, Fu D Z, Dong J J, et al. Orbital angular momentum complex spectrum analyzer for vortex light based on the rotational Doppler effect[J]. Light: Science & Applications, 2016, 6(4): e16251. doi: 10.1038/lsa.2016.251

    CrossRef Google Scholar

    [137] LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521(7553): 436–444. doi: 10.1038/nature14539

    CrossRef Google Scholar

    [138] Knutson E M, Lohani S, Danaci O, et al. Deep learning as a tool to distinguish between high orbital angular momentum optical modes[C]//Optics and Photonics for Information Processing X. International Society for Optics and Photonics, San Diego, California, United States 2016, 9970: 997013.

    Google Scholar

    [139] Doster T, Watnik A T. Machine learning approach to OAM beam demultiplexing via convolutional neural networks[J]. Applied Optics, 2017, 56(12): 3386–3396. doi: 10.1364/AO.56.003386

    CrossRef Google Scholar

    [140] Li J, Zhang M, Wang D S. Adaptive demodulator using machine learning for orbital angular momentum shift keying[J]. IEEE Photonics Technology Letters, 2017, 29(17): 1455–1458. doi: 10.1109/LPT.2017.2726139

    CrossRef Google Scholar

    [141] Li J, Zhang M, Wang D S, et al. Joint atmospheric turbulence detection and adaptive demodulation technique using the CNN for the OAM-FSO communication[J]. Optics Express, 2018, 26(8): 10494–10508. doi: 10.1364/OE.26.010494

    CrossRef Google Scholar

    [142] Tian Q H, Li Z, Hu K, et al. Turbo-coded 16-ary OAM shift keying FSO communication system combining the CNN-based adaptive demodulator[J]. Optics Express, 2018, 26(21): 27849–27864. doi: 10.1364/OE.26.027849

    CrossRef Google Scholar

    [143] Zhao Q S, Hao S Q, Wang Y, et al. Mode detection of misaligned orbital angular momentum beams based on convolutional neural network[J]. Applied Optics, 2018, 57(35): 10152–10158. doi: 10.1364/AO.57.010152

    CrossRef Google Scholar

    [144] Jiang S Q, Chi H, Yu X B, et al. Coherently demodulated orbital angular momentum shift keying system using a CNN-based image identifier as demodulator[J]. Optics Communications, 2019, 435: 367–373. doi: 10.1016/j.optcom.2018.11.054

    CrossRef Google Scholar

    [145] Wang Z K, Dedo M I, Guo K, et al. Efficient recognition of the propagated orbital angular momentum modes in turbulences with the convolutional neural network[J]. IEEE Photonics Journal, 2019, 11(3): 7903614. doi: 10.1109/JPHOT.2019.2916207

    CrossRef Google Scholar

    [146] Chi H, Jiang S Q, Ou J, et al. Comprehensive study of orbital angular momentum shift keying systems with a CNN-based image identifier[J]. Optics Communications, 2019, 454: 124518. doi: 10.1016/j.optcom.2019.124518

    CrossRef Google Scholar

    [147] Xie G D, Ren Y X, Yan Y, et al. Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre–Gaussian beams with different radial indices[J]. Optics Letters, 2016, 41(15): 3447–3450. doi: 10.1364/OL.41.003447

    CrossRef Google Scholar

    [148] Li L, Xie G D, Yan Y, et al. Power loss mitigation of orbital-angular-momentum-multiplexed free-space optical links using nonzero radial index Laguerre–Gaussian beams[J]. Journal of the Optical Society of America B, 2017, 34(1): 1–6. doi: 10.1364/JOSAB.34.000001

    CrossRef Google Scholar

    [149] Guo Z Y, Wang Z K, Dedo M I, et al. The orbital angular momentum encoding system with radial indices of Laguerre–Gaussian beam[J]. IEEE Photonics Journal, 2018, 10(5): 7906511. doi: 10.1109/jphot.2018.2859807

    CrossRef Google Scholar

    [150] Andrews L C, Phillips R L. Laser Beam Propagation through Random Media[M]. 2nd ed. Bellingham, WA: SPIE Press, 2005.

    Google Scholar

    [151] Ke X Z, Wang J, Wang M J. Evolution of degree of polarization of partially coherent beams propagation in slant and horizontal atmospheric turbulence[J]. Indian Journal of Physics, 2019, 93(6): 691–699. doi: 10.1007/s12648-018-1336-8

    CrossRef Google Scholar

    [152] Wang J, Ke X Z, Wang M J. Influence of source parameters and atmospheric turbulence on the polarization properties of partially coherent electromagnetic vortex beams[J]. Applied Optics, 2019, 58(24): 6486–6494. doi: 10.1364/AO.58.006486

    CrossRef Google Scholar

    [153] 柯熙政, 宁川, 王姣.大气湍流下轨道角动量复用态串扰分析[J].红外与激光工程, 2018, 47(11): 1122002.

    Google Scholar

    Ke X Z, Ning C, Wang J. Crosstalk analysis of orbital angular momentum-multiplexed state under atmospheric turbulence[J]. Infrared and Laser Engineering, 2018, 47(11): 1122002.

    Google Scholar

    [154] 柯熙政, 王超珍.部分相干离轴涡旋光束在大气湍流中的光强分布[J].光学学报, 2017, 37(1): 36–42.

    Google Scholar

    Ke X Z, Wang C Z. Intensity distribution of partially coherent off-axis vortex beam propagating in atmospheric turbulence[J]. Acta Optica Sinica, 2017, 37(1): 36–42.

    Google Scholar

    [155] 柯熙政, 王超珍.部分相干涡旋光束在大气湍流中传输时的光强分布[J].激光与光电子学进展, 2016, 53(11): 110604.

    Google Scholar

    Ke X Z, Wang C Z. Intensity distribution of the partially coherent vortex beams propagating in atmospheric turbulence[J]. Laser & Optoelectronics Progress, 2016, 53(11): 110604.

    Google Scholar

    [156] 柯熙政, 谌娟, 杨一明.在大气湍流斜程传输中拉盖高斯光束的轨道角动量的研究[J].物理学报, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301

    CrossRef Google Scholar

    Ke X Z, Chen J, Yang Y M. Study on orbital angular momentum of Laguerre-Gaussian beam in a slant-path atmospheric turbulence[J]. Acta Physica Sinica, 2014, 63(15): 150301. doi: 10.7498/aps.63.150301

    CrossRef Google Scholar

    [157] 席瑞, 朱冰. OAM光束短距离自由空间传输特性的实验研究[J].光电工程, 2019, 46(6): 180386. doi: 10.12086/oee.2019.180386

    CrossRef Google Scholar

    Xi R, Zhu B. Experimental study on short-distance free-space transmission characteristics of OAM beam[J]. Opto-Electronic Engineering, 2019, 46(6): 180386. doi: 10.12086/oee.2019.180386

    CrossRef Google Scholar

    [158] Anguita J A, Neifeld M A, Vasic B V. Turbulence-induced channel crosstalk in an orbital angular momentum-multiplexed free-space optical link[J]. Applied Optics, 2008, 47(13): 2414–2429. doi: 10.1364/AO.47.002414

    CrossRef Google Scholar

    [159] Tyler G A, Boyd R W. Influence of atmospheric turbulence on the propagation of quantum states of light carrying orbital angular momentum[J]. Optics Letters, 2009, 34(2): 142–144.

    Google Scholar

    [160] Malik M, O'Sullivan M, Rodenburg B, et al. Influence of atmospheric turbulence on optical communications using orbital angular momentum for encoding[J]. Optics Express, 2012, 20(12): 13195–13200. doi: 10.1364/OE.20.013195

    CrossRef Google Scholar

    [161] Rodenburg B, Lavery M P J, Malik M, et al. Influence of atmospheric turbulence on states of light carrying orbital angular momentum[J]. Optics Letters, 2012, 37(17): 3735–3737. doi: 10.1364/OL.37.003735

    CrossRef Google Scholar

    [162] Ren Y X, Huang H, Xie G D, et al. Atmospheric turbulence effects on the performance of a free space optical link employing orbital angular momentum multiplexing[J]. Optics Letters, 2013, 38(20): 4062–4065. doi: 10.1364/OL.38.004062

    CrossRef Google Scholar

    [163] Ren Y X, Xie G D, Huang H, et al. Adaptive optics compensation of multiple orbital angular momentum beams propagating through emulated atmospheric turbulence[J]. Optics Letters, 2014, 39(10): 2845–2848. doi: 10.1364/OL.39.002845

    CrossRef Google Scholar

    [164] Ren Y X, Xie G D, Huang H, et al. Adaptive-optics-based simultaneous pre-and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link[J]. Optica, 2014, 1(6): 376–382. doi: 10.1364/OPTICA.1.000376

    CrossRef Google Scholar

    [165] Ren Y X, Xie G D, Huang H, et al. Turbulence compensation of an orbital angular momentum and polarization-multiplexed link using a data-carrying beacon on a separate wavelength[J]. Optics Letters, 2015, 40(10): 2249–2252. doi: 10.1364/OL.40.002249

    CrossRef Google Scholar

    [166] Gerchberg R W, Saxton W O. A practical algorithm for the determination of phase from image and diffraction plane pictures[J]. Optik, 1972, 35: 237–246.

    Google Scholar

    [167] Liu L, Vorontsov M A. Phase-locking of tiled fiber array using SPGD feedback controller[C]//Target-in-the-Loop: Atmospheric Tracking, Imaging, and Compensation Ⅱ. International Society for Optics and Photonics, San Diego, California, United States, 2005, 5895: 58950P.

    Google Scholar

    [168] Ren Y X, Huang H, Yang J Y, et al. Correction of phase distortion of an OAM mode using GS algorithm based phase retrieval[C]//CLEO: Science and Innovations 2012, San Jose, California United States, 2012.

    Google Scholar

    [169] Fu S Y, Zhang S K, Wang T L, et al. Pre-turbulence compensation of orbital angular momentum beams based on a probe and the Gerchberg–Saxton algorithm[J]. Optics Letters, 2016, 41(14): 3185–3188. doi: 10.1364/OL.41.003185

    CrossRef Google Scholar

    [170] Dedo M I, Wang Z K, Guo K, et al. Retrieving Performances of Vortex Beams with GS Algorithm after Transmitting in Different Types of Turbulences[J]. Applied Sciences, 2019, 9(11): 2269. doi: 10.3390/app9112269

    CrossRef Google Scholar

    [171] 柯熙政, 王夏尧.涡旋光波前畸变校正实验研究[J].光学学报, 2018, 38(3): 197–203.

    Google Scholar

    Ke X Z, Wang X Y. Experimental study on the correction of wavefront distortion for vortex beam[J]. Acta Optica Sinica, 2018, 38(3): 197–203.

    Google Scholar

    [172] Xie G D, Ren Y X, Huang H, et al. Phase correction for a distorted orbital angular momentum beam using a Zernike polynomials-based stochastic-parallel-gradient-descent algorithm[J]. Optics Letters, 2015, 40(7): 1197–1200. doi: 10.1364/OL.40.001197

    CrossRef Google Scholar

    [173] Lohani S, Glasser R T. Turbulence correction with artificial neural networks[J]. Optics Letters, 2018, 43(11): 2611–2614. doi: 10.1364/OL.43.002611

    CrossRef Google Scholar

    [174] Huang H, Cao Y W, Xie G D, et al. Crosstalk mitigation in a free-space orbital angular momentum multiplexed communication link using 4×4 MIMO equalization[J]. Optics Letters, 2014, 39(15): 4360–4363. doi: 10.1364/OL.39.004360

    CrossRef Google Scholar

    [175] Ren Y X, Wang Z, Xie G D, et al. Atmospheric turbulence mitigation in an OAM-based MIMO free-space optical link using spatial diversity combined with MIMO equalization[J]. Optics Letters, 2016, 41(11): 2406–2409. doi: 10.1364/OL.41.002406

    CrossRef Google Scholar

    [176] Djordjevic I B, Arabaci M. LDPC-coded orbital angular momentum (OAM) modulation for free-space optical communication[J]. Optics Express, 2010, 18(24): 24722–24728. doi: 10.1364/OE.18.024722

    CrossRef Google Scholar

    [177] Zhang Y, Wang P, Liu T, et al. Performance analysis of a LDPC coded OAM-based UCA FSO system exploring linear equalization with channel estimation over atmospheric turbulence[J]. Optics Express, 2018, 26(17): 22182–22196. doi: 10.1364/OE.26.022182

    CrossRef Google Scholar

    [178] Shi C Z, Dubois M, Wang Y, et al. High-speed acoustic communication by multiplexing orbital angular momentum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(28): 7250–7253. doi: 10.1073/pnas.1704450114

    CrossRef Google Scholar

    [179] Willner A E, Ren Y X, Xie G D, et al. Recent advances in high-capacity free-space optical and radio-frequency communications using orbital angular momentum multiplexing[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2017, 375(2087): 20150439. doi: 10.1098/rsta.2015.0439

    CrossRef Google Scholar

  • Overview: In recent years, expanding capacity of communication systems has become an urgent problem in the communication field, and the exploration of more communication resource dimensions has become an inevitable trend in building high-speed communication technologies. Momentum is a fundamental quantity in physics. Besides linear momentum, structural beam can also carry angular momentum, including spin angular momentum and orbital angular momentum (OAM). OAM is widely studied in classical mechanics and quantum mechanics. It should be noted that the OAM carried by the vortex beam provides a new dimension resource for the spatial domain of the light wave. Using the infinity of OAM mode values and the orthogonality between OAM mode values, OAM-based optical communication technology has changed the previous situation that optical communication is limited to dimensional resources. There are two mechanisms in current OAM-based optical communication. The first is to map the digital signal to different OAM beams and each OAM mode represents one data bit according to the diversity of the OAM modes, which is called OAM shift keying (OAM-SK). The second is to use the OAM beam as the carrier of the modulated signal and utilize the orthogonality between different OAM modes to achieve channel multiplexing so as to multiplying the channel capacity, which is called OAM division multiplexing (OAM-DM). These two communication mechanisms have brought traditional optical communication technology to a new level. In order to achieve high-quality communication performance, they are still urgent problems to make the OAM beams’ generator more integrated, and design more efficient OAM multiplexing and demodulation modules. Here, this paper introduces the basic theory of OAM, and summarizes the types of OAM beams and their generating schemes. At the same time, the typical research schemes of two application mechanisms of OAM-SK and OAM-DM in recent years are summarized, and the key technologies such as OAM multiplexing technology, demodulation technology and atmospheric turbulence suppression technology involved in them are also described in details.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(13)

Tables(2)

Article Metrics

Article views(23861) PDF downloads(12362) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint