Shi X Y, Wang D Y, Rong L, et al. Phase contrast imaging based on continuous-wave terahertz digital holography[J]. Opto-Electron Eng, 2020, 47(5): 190543. doi: 10.12086/oee.2020.190543
Citation: Shi X Y, Wang D Y, Rong L, et al. Phase contrast imaging based on continuous-wave terahertz digital holography[J]. Opto-Electron Eng, 2020, 47(5): 190543. doi: 10.12086/oee.2020.190543

Phase contrast imaging based on continuous-wave terahertz digital holography

    Fund Project: Supported by National Natural Science Foundation of China (61675010) and Beijing Nova Program (2018072)
More Information
  • Terahertz (THz) radiation, due to its unique propagation characters of low-energy, high-penetration, water-absorption, provides internal structure of objects and comprehensive biological information in phase contrast imaging. It has been applied in biomedical imaging, non-destructive testing, and other fields. As an important part of THz imaging technology, continuous-wave (CW) THz digital holography (TDH) is qualified as a non-invasive and whole-field phase contrast imaging method. In this paper, we review the development and status of off-axis and in-line TDH, including the recording and reconstruction theory, experimental setup, and reconstruction algorithms. The influence of existing THz sources and the reconstruction algorithms on resolution and fidelity of imaging are analyzed. And the development trend of TDH is prospected in the end.
  • 加载中
  • [1] Zhang X C, Shkurinov A, Zhang Y. Extreme terahertz science[J]. Nature Photonics, 2017, 11(1): 16-18. doi: 10.1038/nphoton.2016.249

    CrossRef Google Scholar

    [2] Tonouchi M. Cutting-edge terahertz technology[J]. Nature Photonics, 2007, 1(2): 97-105. doi: 10.1038/nphoton.2007.3

    CrossRef Google Scholar

    [3] De Cumis U S, Xu J H, Masini L, et al. Terahertz confocal microscopy with a quantum cascade laser source[J]. Optics Express, 2012, 20(20): 21924-21931. doi: 10.1364/OE.20.021924

    CrossRef Google Scholar

    [4] Suga M, Sasaki Y, Sasahara T, et al. THz phase-contrast computed tomography based on Mach-Zehnder interferometer using continuous wave source: proof of the concept[J]. Optics Express, 2013, 21(21): 25389-25402. doi: 10.1364/OE.21.025389

    CrossRef Google Scholar

    [5] Fischer B M, Hoffmann M, Helm H, et al. Terahertz time-domain spectroscopy and imaging of artificial RNA[J]. Optics Express, 2005, 13(14): 5205-5215. doi: 10.1364/OPEX.13.005205

    CrossRef Google Scholar

    [6] Zhong H, Redo-Sanchez A, Zhang X C. Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system[J]. Optics Express, 2006, 14(20): 9130-9141. doi: 10.1364/OE.14.009130

    CrossRef Google Scholar

    [7] Bianco V, Memmolo P, Leo M, et al. Strategies for reducing speckle noise in digital holography[J]. Light: Science & Applications, 2018, 7(1): 48.

    Google Scholar

    [8] Nelson J W, Knefelkamp G R, Brolo A G, et al. Digital plasmonic holography[J]. Light: Science & Applications, 2018, 7(1): 52.

    Google Scholar

    [9] Tikan A, Bielawski S, Szwaj C, et al. Single-shot measurement of phase and amplitude by using a heterodyne time-lens system and ultrafast digital time-holography[J]. Nature Photonics, 2018, 12(4): 228-234. doi: 10.1038/s41566-018-0113-8

    CrossRef Google Scholar

    [10] Schnars U, Falldorf C, Watson J, et al. Digital Holography and Wavefront Sensing[M]. New York: Springer, 2015.

    Google Scholar

    [11] Asundi A. Digital Holography for MEMS and Microsystem Metrology[M]. Chichester/Hoboken: Wiley, 2011.

    Google Scholar

    [12] Minamide H, Ito H. Frequency-agile terahertz-wave generation and detection using a nonlinear optical conversion, and their applications for imaging[J]. Comptes Rendus Physique, 2010, 11(7-8): 457-471. doi: 10.1016/j.crhy.2010.05.005

    CrossRef Google Scholar

    [13] Faist J, Capasso F, Sivco D L, et al. Quantum cascade laser[J]. Science, 1994, 264(5158): 553-556. doi: 10.1126/science.264.5158.553

    CrossRef Google Scholar

    [14] Rochat M, Ajili L, Willenberg H, et al. Low-threshold terahertz quantum-cascade lasers[J]. Applied Physics Letters, 2002, 81(8): 1381-1383. doi: 10.1063/1.1498861

    CrossRef Google Scholar

    [15] Kumar S. Recent progress in terahertz quantum cascade lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(1): 38-47. doi: 10.1109/JSTQE.2010.2049735

    CrossRef Google Scholar

    [16] Gribnikov Z S, Bashirov R R, Mitin V V. Negative effective mass mechanism of negative differential drift velocity and terahertz generation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7(4): 630-640. doi: 10.1109/2944.974235

    CrossRef Google Scholar

    [17] Maestrini A, Thomas B, Wang H, et al. Schottky diode-based terahertz frequency multipliers and mixers[J]. Comptes Rendus Physique, 2010, 11(7-8): 480-495. doi: 10.1016/j.crhy.2010.05.002

    CrossRef Google Scholar

    [18] Dobroiu A, Yamashita M, Ohshima Y N, et al. Terahertz imaging system based on a backward-wave oscillator[J]. Applied Optics, 2004, 43(30): 5637-5646. doi: 10.1364/AO.43.005637

    CrossRef Google Scholar

    [19] Martens S, Gompf B, Dressel M. Characterization of continuous-wave terahertz sources: laser mixing versus backward-wave oscillators[J]. Applied Optics, 2009, 48(29): 5490-5496. doi: 10.1364/AO.48.005490

    CrossRef Google Scholar

    [20] Baik C W, Son Y M, Kim S I, et al. Microfabricated coupled-cavity backward-wave oscillator for terahertz imaging[C]//Proceedings of 2008 IEEE International Vacuum Electronics Conference, 2008: 398-399.https://ieeexplore.ieee.org/document/4556367/

    Google Scholar

    [21] Wan M, Muniraj I, Malallah R, et al. Sparsity based terahertz reflective off-axis digital holography[J]. Proceedings of SPIE, 2017, 10233: 102330T.

    Google Scholar

    [22] Valzania L, Feurer T, Zolliker P, et al. Terahertz ptychography[J]. Optics Letters, 2018, 43(3): 543-546. doi: 10.1364/OL.43.000543

    CrossRef Google Scholar

    [23] Hack E, Zolliker P. Terahertz holography for imaging amplitude and phase objects[J]. Optics Express, 2014, 22(13): 16079-16086. doi: 10.1364/OE.22.016079

    CrossRef Google Scholar

    [24] Zolliker P, Hack E. THz holography in reflection using a high resolution microbolometer array[J]. Optics Express, 2015, 23(9): 10957-10967. doi: 10.1364/OE.23.010957

    CrossRef Google Scholar

    [25] Locatelli M, Ravaro M, Bartalini S, et al. Real-time terahertz digital holography with a quantum cascade laser[J]. Scientific Reports, 2015, 5: 13566. doi: 10.1038/srep13566

    CrossRef Google Scholar

    [26] Li Z Y, Yan Q, Qin Y, et al. Sparsity-based continuous wave terahertz lens-free on-chip holography with sub-wavelength resolution[J]. Optics Express, 2019, 27(2): 702-713. doi: 10.1364/OE.27.000702

    CrossRef Google Scholar

    [27] Deng Q H, Li W H, Wang X M, et al. High-resolution terahertz inline digital holography based on quantum cascade laser[J]. Optical Engineering, 2017, 56(11): 113102.

    Google Scholar

    [28] 黄昊翀.连续太赫兹波同轴数字全息成像方法的研究[D].北京: 北京工业大学, 2017.

    Google Scholar

    Huang H C. The research on continuous-wave terahertz in-line digital holographic imaging method[D]. Beijing: Beijing University of Technology, 2017.

    Google Scholar

    [29] Goodman J W. Introduction to Fourier Optics[M]. 3rd ed. Greenwoood Village: Roberts & Company Publishers, 2005.

    Google Scholar

    [30] Mahon R, Murphy A, Lanigan W. Terahertz holographic image reconstruction and analysis[C]//Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, 2004: 749-750.https://ieeexplore.ieee.org/document/1422309/

    Google Scholar

    [31] Mahon R J, Murphy J A, Lanigan W. Digital holography at millimetre wavelengths[J]. Optics Communications, 2006, 260(2): 469-473. doi: 10.1016/j.optcom.2005.11.024

    CrossRef Google Scholar

    [32] Heimbeck M S, Kim M K, Gregory D A, et al. Terahertz digital holography using angular spectrum and dual wavelength reconstruction methods[J]. Optics Express, 2011, 19(10): 9192-9200. doi: 10.1364/OE.19.009192

    CrossRef Google Scholar

    [33] Ding S H, Li Q, Li Y D, et al. Continuous-wave terahertz digital holography by use of a pyroelectric array camera[J]. Optics Letters, 2011, 36(11): 1993-1995. doi: 10.1364/OL.36.001993

    CrossRef Google Scholar

    [34] Li Q, Li Y D, Ding S H, et al. Terahertz computed tomography using a continuous-wave gas laser[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(5): 548-558. doi: 10.1007/s10762-012-9897-7

    CrossRef Google Scholar

    [35] Li Q, Ding S H, Li Y D, et al. Experimental research on resolution improvement in CW THz digital holography[J]. Applied Physics B, 2012, 107: 103-110. doi: 10.1007/s00340-012-4876-1

    CrossRef Google Scholar

    [36] Yamagiwa M, Ogawa T, Minamikawa T, et al. Real-time amplitude and phase imaging of optically opaque objects by combining full-field off-axis terahertz digital holography with angular spectrum reconstruction[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2018, 39(6): 561-572. doi: 10.1007/s10762-018-0482-6

    CrossRef Google Scholar

    [37] Cherkassky V S, Knyazev B A, Kubarev V V, et al. Imaging techniques for a high-power THz free electron laser[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2005, 543(1): 102-109.

    Google Scholar

    [38] Tamminen A, Ala-Laurinaho J, Raisanen A V. Indirect holographic imaging at 310 GHz[C]//Proceedings of 2008 European Radar Conference, 2008: 168-171.

    Google Scholar

    [39] Wang X K, Hou L, Zhang Y. Continuous-wave terahertz interferometry with multiwavelength phase unwrapping[J]. Applied Optics, 2010, 49(27): 5095-5102. doi: 10.1364/AO.49.005095

    CrossRef Google Scholar

    [40] Wang Y X, Zhao Z R, Chen Z Q, et al. Continuous-wave terahertz phase imaging using a far-infrared laser interferometer[J]. Applied Optics, 2011, 50(35): 6452-6460. doi: 10.1364/AO.50.006452

    CrossRef Google Scholar

    [41] Gao X, Li C, Fang G Y. Study of image reconstruction for terahertz indirect holography with quasi-optics receiver[J]. Journal of the Optical Society of America A, 2013, 30(6): 1291-1296. doi: 10.1364/JOSAA.30.001291

    CrossRef Google Scholar

    [42] Humphreys M, Grant J P, Escorcia-Carranza I, et al. Video-rate terahertz digital holographic imaging system[J]. Optics Express, 2018, 26(20): 25805-25813. doi: 10.1364/OE.26.025805

    CrossRef Google Scholar

    [43] Guizar-Sicairos M, Thurman S T, Fienup J R. Efficient subpixel image registration algorithms[J]. Optics Letters, 2008, 33(2): 156-158. doi: 10.1364/OL.33.000156

    CrossRef Google Scholar

    [44] Wang D Y, Zhao Y L, Rong L, et al. Expanding the field-of-view and profile measurement of covered objects in continuous-wave terahertz reflective digital holography[J]. Optical Engineering, 2019, 58(2): 023111.

    Google Scholar

    [45] 王大勇, 黄昊翀, 周逊, 等.连续太赫兹波同轴数字全息相衬成像[J].中国激光, 2014, 41(8): 232-237.

    Google Scholar

    Wang D Y, Huang H C, Zhou X, et al. Phase-contrast imaging by the continuous-wave terahertz line digital holography[J]. Chinese Journal of Lasers, 2014, 41(8): 232-237.

    Google Scholar

    [46] Fienup J R. Reconstruction of an object from the modulus of its Fourier transform[J]. Optics Letters, 1978, 3(1): 27-29.

    Google Scholar

    [47] Xue K, Li Q, Li Y D, et al. Continuous-wave terahertz in-line digital holography[J]. Optics Letters, 2012, 37(15): 3228-3230. doi: 10.1364/OL.37.003228

    CrossRef Google Scholar

    [48] Li Q, Xue K, Li Y D, et al. Experimental research on terahertz Gabor inline digital holography of concealed objects[J]. Applied Optics, 2012, 51(29): 7052-7058. doi: 10.1364/AO.51.007052

    CrossRef Google Scholar

    [49] Rong L, Latychevskaia T, Wang D Y, et al. Terahertz in-line digital holography of dragonfly hindwing: amplitude and phase reconstruction at enhanced resolution by extrapolation[J]. Optics Express, 2014, 22(14): 17236-17245. doi: 10.1364/OE.22.017236

    CrossRef Google Scholar

    [50] 胡佳琦, 李琦, 杨永发.基于相位恢复法的连续太赫兹同轴数字全息成像仿真研究[J].激光与光电子学进展, 2015, 52(1): 92-98.

    Google Scholar

    Hu J Q, Li Q, Yang Y F. Simulation research on continuous Terahertz inline digital holography imaging based on phase retrieval algorithm[J]. Laser & Optoelectronics Progress, 2015, 52(1): 92-98.

    Google Scholar

    [51] Rong L, Latychevskaia T, Chen C H, et al. Terahertz in-line digital holography of human hepatocellular carcinoma tissue[J]. Scientific Reports, 2015, 5: 8445. doi: 10.1038/srep08445

    CrossRef Google Scholar

    [52] Hu J Q, Li Q, Cui S S. Research on object-plane constraints and hologram expansion in phase retrieval algorithms for continuous-wave terahertz inline digital holography reconstruction[J]. Applied Optics, 2014, 53(30): 7112-7119. doi: 10.1364/AO.53.007112

    CrossRef Google Scholar

    [53] Hu J Q, Li Q, Zhou Y. Support-domain constrained phase retrieval algorithms in terahertz in-line digital holography reconstruction of a nonisolated amplitude object[J]. Applied Optics, 2016, 55(2): 379-386. doi: 10.1364/AO.55.000379

    CrossRef Google Scholar

    [54] Hu J Q, Li Q, Chen G H. Reconstruction of double-exposed terahertz hologram of non-isolated object[J]. Journal of Infrared, Millimeter, and Terahertz Waves, 2016, 37(4): 328-339. doi: 10.1007/s10762-015-0238-5

    CrossRef Google Scholar

    [55] Huang H C, Rong L, Wang D Y, et al. Synthetic aperture in terahertz in-line digital holography for resolution enhancement[J]. Applied Optics, 2016, 55(3): A43-A48. doi: 10.1364/AO.55.000A43

    CrossRef Google Scholar

    [56] 万敏, 黎维华, 王大勇, 等.连续太赫兹波合成孔径数字全息成像方法[J].太赫兹科学与电子信息学报, 2017, 15(3): 358-363.

    Google Scholar

    Wan M, Li W H, Wang D Y, et al. Digital holography of continuous terahertz wave synthetic aperture[J]. Journal of Terahertz Science and Electronic Information Technology, 2017, 15(3): 358-363.

    Google Scholar

    [57] Chen G H, Li Q. Markov chain Monte Carlo sampling based terahertz holography image denoising[J]. Applied Optics, 2015, 54(14): 4345-4351. doi: 10.1364/AO.54.004345

    CrossRef Google Scholar

    [58] 崔珊珊, 李琦.基于小波变换的太赫兹数字全息再现像去噪研究[J].红外与激光工程, 2015, 44(6): 1836-1840. doi: 10.3969/j.issn.1007-2276.2015.06.029

    CrossRef Google Scholar

    Cui S S, Li Q. De-noising research on terahertz digital holography based on wavelet transform[J]. Infrared and Laser Engineering, 2015, 44(6): 1836-1840. doi: 10.3969/j.issn.1007-2276.2015.06.029

    CrossRef Google Scholar

    [59] Huang H C, Wang D Y, Rong L, et al. Application of autofocusing methods in continuous-wave terahertz in-line digital holography[J]. Optics Communications, 2015, 346: 93-98. doi: 10.1016/j.optcom.2015.01.077

    CrossRef Google Scholar

    [60] Huang H C, Wang D Y, Li W H, et al. Continuous-wave terahertz multi-plane in-line digital holography[J]. Optics and Lasers in Engineering, 2017, 94: 76-81. doi: 10.1016/j.optlaseng.2017.03.005

    CrossRef Google Scholar

    [61] Li Z Y, Li L, Qin Y, et al. Resolution and quality enhancement in terahertz in-line holography by sub-pixel sampling with double-distance reconstruction[J]. Optics Express, 2016, 24(18): 21134-21146. doi: 10.1364/OE.24.021134

    CrossRef Google Scholar

    [62] Ibrahim D G A. Steep large film thickness measurement with off-axis terahertz digital holography reconstructed by a direct Fourier and Hermite polynomial[J]. Applied Optics, 2018, 57(10): 2533-2538. doi: 10.1364/AO.57.002533

    CrossRef Google Scholar

    [63] Huang H C, Wang D Y, Rong L, et al. Continuous-wave off-axis and in-line terahertz digital holography with phase unwrapping and phase autofocusing[J]. Optics Communications, 2018, 426: 612-622. doi: 10.1016/j.optcom.2018.06.011

    CrossRef Google Scholar

    [64] Zhang Y, Zhou W, Wang X, et al. Terahertz digital holography[J]. Strain, 2008, 44(5): 380-385. doi: 10.1111/j.1475-1305.2008.00433.x

    CrossRef Google Scholar

    [65] Wang X K, Cui Y, Hu D, et al. Terahertz quasi-near-field real-time imaging[J]. Optics Communications, 2009, 282(24): 4683-4687. doi: 10.1016/j.optcom.2009.09.004

    CrossRef Google Scholar

    [66] Wang X K, Cui Y, Sun W F, et al. Terahertz real-time imaging with balanced electro-optic detection[J]. Optics Communications, 2010, 283(23): 4626-4632. doi: 10.1016/j.optcom.2010.07.010

    CrossRef Google Scholar

    [67] Wang X K, Cui Y, Sun W F, et al. Terahertz polarization real-time imaging based on balanced electro-optic detection[J]. Journal of the Optical Society of America A, 2010, 27(11): 2387-2393. doi: 10.1364/JOSAA.27.002387

    CrossRef Google Scholar

    [68] 郭力菡, 王新柯, 张岩.生物组织的太赫兹数字全息成像[J].光学精密工程, 2017, 25(3): 611-615.

    Google Scholar

    Guo L H, Wand X K, Zhang Y. Terahertz digital holographic imaging of biological tissues[J]. Optics and Precision Engineering, 2017, 25(3): 611-615.

    Google Scholar

    [69] 郑显华, 王新柯, 孙文峰, 等.太赫兹数字全息术的研发与应用[J].中国激光, 2014, 41(2): 24-34.

    Google Scholar

    Zheng X H, Wang X K, Sun W F, et al. Developments and applications of the Terahertz digital holography[J]. Chinese Journal of Lasers, 2014, 41(2): 24-34.

    Google Scholar

    [70] 石敬, 王新柯, 郑显华, 等.太赫兹数字全息术的研究进展[J].中国光学, 2017, 10(1): 131-147.

    Google Scholar

    Shi J, Wang X K, Zheng X H, et al. Recent advances in terahertz digital holography[J]. Chinese Optics, 2017, 10(1): 131-147.

    Google Scholar

    [71] Petrov N V, Kulya M S, Tsypkin A N, et al. Application of terahertz pulse time-domain holography for phase imaging[J]. IEEE Transactions on Terahertz Science and Technology, 2016, 6(3): 464-472. doi: 10.1109/TTHZ.2016.2530938

    CrossRef Google Scholar

    [72] Balbekin N S, Kulya M S, Petrov N V. Terahertz pulse time-domain holography in dispersive media[J]. Computer Optics, 2017, 41(3): 348-355. doi: 10.18287/2412-6179-2017-41-3-348-355

    CrossRef Google Scholar

    [73] Kulya M, Petrov N V, Tsypkin A, et al. Hyperspectral data denoising for terahertz pulse time-domain holography[J]. Optics Express, 2019, 27(13): 18456-18476. doi: 10.1364/OE.27.018456

    CrossRef Google Scholar

  • Overview: Terahertz (THz) radiation is characterized with low-energy, high-penetration, and water-absorption, which could provide internal structure of objects and comprehensive biological information by THz phase contrast imaging. Due to this unique feature, THz radiation has been applied in biomedical imaging, non-destructive testing, and other fields. As an important part of THz imaging technology, continuous-wave THz digital holography (TDH) by recording the complex amplitude in the hologram and numerically retrieving the corresponding phase-shift properties of object, is qualified as a non-invasive and whole-field phase contrast imaging method. With the development of continuous-wave THz sources, detectors, and imaging components, the continuous-wave TDH imaging technology is well developed.

    The development and status of off-axis and in-line TDH are reviewed, including the recording and reconstruction theory, experimental setup, and reconstruction algorithms. For the off-axis TDH, the reflective and transmitted TDH has all been introduced. The firstly off-axis TDH configuration is attempted using a 100 GHz Gunn diode oscillator and Schottky-barrier diode. Complete "full-field" phase imaging with higher lateral resolution is achieved using an optically pumped FIR laser and a pyroelectrial array detector, which is then widely applied in continuous-wave TDH configuration later. And the effectiveness of Rayleigh-Sommerfeld convolution algorithm, Fresnel angular spectrum algorithm, and angular spectrum integral are evaluated for off-axis TDH. Miniaturized THz quantum cascade laser with high power and high frequency are also used in TDH full-field imaging system to improve the imaging resolution. For the in-line TDH, the scattered beam by sample interferes with the unscattered part to form the in-line hologram, which is quite suitable for isolated objects imaging. Compared with off-axis TDH, the recording geometry of in-line TDH is more compact, and reconstruction resolution is higher. The twin image is one of the most important problems for in-line TDH, which is solved by iterations with proper constraints in these two planes and phase retrieval algorithm. Constraints on the object plane and extrapolation algorithms for iterative reconstruction of in-line TDH are studied to achieve higher resolution. In addition, different methods are presented to improve the imaging quality of continuous-wave TDH, such as synthetic aperture, denoising method, auto-focusing algorithms, and multi-plane imaging.

    In conclusion, the paper summarized the progress of continuous-wave THz digital holography, including the influence of existing THz imaging components and the reconstruction algorithms on resolution and fidelity of imaging are analyzed. And the future development trend of continuous-wave TDH is discussed in the end of the paper.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(12)

Article Metrics

Article views(9615) PDF downloads(4135) Cited by(0)

Access History

Other Articles By Authors

Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint