Due to the unique advantages of complex curved aluminum mirrors, its application in optical systems is becoming more and more widespread. However, the accuracy of optical mirrors that are only processed by ultra-precision turning is limited by the "error reflection" of ultra-precision turning, which can only meet the application requirements of infrared systems, and its further promotion and application have encountered bottlenecks. The combined processing technology of ultra-precision turning, magnetorheological polishing, and computer-controlled surface forming (CCOS), combined with the computational hologram method (CGH) of the complex optical curved surface (CGH) surface shape detection technology, can further improve the surface shape accuracy of the aluminum reflector, to meet the application requirements of visible light systems, and lay the foundation for the promotion and application of complex curved aluminum alloy mirrors.
Home > Journal Home > Opto-Electronic Engineering
Opto-Electronic Engineering
ISSN: 1003-501X
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
Current status of ultra-precision manufacturing of complex curved aluminum reflectors
Author Affiliations

First published at:Aug 31, 2020
Abstract
Overview
References
1 Li X L. Research on the key technology of magnetorheological polishing of complex curved aluminum mirror[D]. Changsha: National University of Defense Technology, 2018: 1–51.
4 Saunders I J, Ploeg L, Dorrepaal M, et al. Fabrication and metrology of freeform aluminum mirrors for the SCUBA-2 instrument[J]. Proceedings of SPIE, 2005, 5869: 586905. DOI:10.1117/12.612998
6 Beier M, Hartung J, Peschel T, et al. Development, fabrication, and testing of an anamorphic imaging snap-together freeform telescope[J]. Applied Optics, 2015, 54(12): 3530–3542. DOI:10.1364/AO.54.003530
10 Kirschstein S, Koch A, Schöneich J, et al. Metal mirror TMA, telescopes of the JSS product line: design and analysis[J]. Proceedings of SPIE, 2005, 5962: 59621M. DOI:10.1117/12.624354
11 Risse S, Gebhardt A, Damm C, et al. Novel TMA telescope based on ultra precise metal mirrors[J]. Proceedings of SPIE, 2008, 7010: 701016. DOI:10.1117/12.789824
13 Scheiding S, Damm C, Holota W, et al. Ultra-precisely manufactured mirror assemblies with well-defined reference structures[J]. Proceedings of SPIE, 2010, 7739: 773908. DOI:10.1117/12.856244
14 Risse S, Scheiding S, Gebhardt A, et al. Development and fabrication of a hyperspectral, mirror based IR-telescope with ultra-precise manufacturing and mounting techniques for a snap-together system assembly[J]. Proceedings of SPIE, 2011, 8176: 81761N. DOI:10.1117/12.898025
15 Long B, Xing T W, Liao S. Design of stress-relief support of aluminum mirrors and assembly assisted by SPDT[J]. Opto-Electronic Engineering, 2014, 41(3): 1–6. DOI:10.3969/j.issn.1003-501X.2014.03.001
龙波, 邢廷文, 廖胜.铝镜消应力支撑及SPDT辅助装配设计[J].光电工程, 2014, 41(3): 1–6. DOI:10.3969/j.issn.1003-501X.2014.03.001
16 Liu M, Zhang L Z, Li X, et al. Design of flexure support of space compact reflector subassembly and dynamic analysis[J]. Opto-Electronic Engineering, 2018, 45(5): 170686. DOI:10.12086/oee.2018.170686
柳鸣, 张立中, 李响, 等.空间轻小型反射镜柔性支撑设计与动力学分析[J].光电工程, 2018, 45(5): 170686. DOI:10.12086/oee.2018.170686
18 Schaefer J P. Advanced metal mirror processing for tactical ISR systems[J]. Proceedings of SPIE, 2013, 8713: 871306. DOI:10.1117/12.2015496
19 Beier M, Scheiding S, Gebhardt A, et al. Fabrication of high precision metallic freeform mirrors with magnetorheological finishing (MRF)[J]. Proceedings of SPIE, 2013, 8884: 88840S. DOI:10.1117/12.2035986
22 Schwalm M, Akerstrom A, Barry M, et al. Hardware results for the Wide-field Infrared Survey Explorer (WISE) telescope and scanner[J]. Proceedings of SPIE, 2010, 7731: 77310Y. DOI:10.1117/12.857499
23 Sampath D, Akerstrom A, Barry M, et al. The WISE telescope and scanner: design choices and hardware results[J]. Proceedings of SPIE, 2010, 7796: 779609. DOI:10.1117/12.864347
26 Zhao T, Hu H, Peng X Q, et al. Study on the surface crystallization mechanism and inhibition method in the CMP process of aluminum alloy mirrors[J]. Applied Optics, 2019, 58(22): 6091–6097. DOI:10.1364/AO.58.006091
27 Li H Y, Walker D, Zheng X, et al. Advanced techniques for robotic polishing of aluminum mirrors[J]. Proceedings of SPIE, 2018, 10692: 106920N.
28 Li H Y, Walker D D, Zheng X, et al. Mid-spatial frequency removal on aluminum free-form mirror[J]. Optics Express, 2019, 27(18): 24885–24899. DOI:10.1364/OE.27.024885
29 Hartung J, Vov Lukowicz H, Kinast J. Theoretical compensation of static deformations of freeform multimirror substrates[J]. Applied Optics, 2018, 57(15): 4020–4031. DOI:10.1364/AO.57.004020
32 Ma J, Pruss C, Häfner M, et al. Systematic analysis of the measurement of cone angles using high line density computer-generated holograms[J]. Optical Engineering, 2011, 50(5): 055801. DOI:10.1117/1.3575649
33 Poleshchuk A G, Korolkov V P, Nasyrov R K, et al. Computer generated holograms: Fabrication and application for precision optical testing[J]. Proceedings of SPIE, 2008, 7102: 710206. DOI:10.1117/12.797816
34 Scheiding S, Beier M, Zeitner U D, et al. Freeform mirror fabrication and metrology using a high performance test CGH and advanced alignment features[J]. Proceedings of SPIE, 2013, 8613: 86130J. DOI:10.1117/12.2001690
36 Gan Z H, Peng X Q, Chen S Y, et al. Fringe discretization and manufacturing analysis of a computer-generated hologram in a null test of the freeform surface[J]. Applied Optics, 2018, 57(34): 9913–9921. DOI:10.1364/AO.57.009913
Keywords:
Funds:
Science Challenge Project (TZ2018006) and National Natural Science Foundation of China (51835013)
Export Citations as:
For
Get Citation:
Xu Chao, Peng Xiaoqiang, Dai Yifan. Current status of ultra-precision manufacturing of complex curved aluminum reflectors[J]. Opto-Electronic Engineering, 2020, 47(8): 200147.