This article reviews on the fabrication advancement of X-ray reflect mirror fabrication in terms of technical requirements, fabrication and metrology development. Synchrotron radiation source, as a revolutionary light source, provides one of the most high-performance X-ray for scientific research, where reflect mirror plays an essential role in X-ray beam focusing. The short wavelength of X-ray demands reflecting photons only at a grazing angle of incidence on the extremely high-precision and smooth surface. Fabrication of such mirrors requires highly specialized equipment and technology that only a few foreign optic manufacturers possess, whereas manufacturers in China is laggard in this area. It is imperative to develop fabrication capability domestically as two synchrotron radiation facilities are under construction and several more projects are about to launch in the near future in China.
Home > Journal Home > Opto-Electronic Engineering
Opto-Electronic Engineering
ISSN: 1003-501X
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
CN: 51-1346/O4
Monthly, included in CA, Scopus, CSCD
A review on the fabrication technology of X-ray reflector
Author Affiliations

First published at:Aug 31, 2020
Abstract
Overview
References
1 Codling K. Applications of synchrotron radiation (ultraviolet spectral light source)[J]. Reports on Progress in Physics, 1973, 36(5): 541-624. DOI:10.1088/0034-4885/36/5/002
3 Winick H. Synchrotron radiation sources - present capabilities and future directions[J]. Journal of Synchrotron Radiation, 1998, 5(3): 168-175. DOI:10.1107/S0909049597018761
4 Susini J, Pauschinger D, Geyl R, et al. Hard x-ray mirror fabrication capabilities in Europe[J]. Optical Engineering, 1995, 34(2): 388-395. DOI:10.1117/12.194836
5 Makeev M A, Cuerno R, Barabási A L. Morphology of ion-sputtered surfaces[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2002, 197(3-4): 185-227. DOI:10.1016/S0168-583X(02)01436-2
6 Schindler A, Haensel T, Flamm D, et al. Ion beam and plasma jet etching for optical component fabrication[J]. Proceedings of SPIE, 2001, 4440: 217-227. DOI:10.1117/12.448043
7 Li A G, Takino H, Frost F. Ion beam planarization of diamond turned surfaces with various roughness profiles[J]. Optics Express, 2017, 25(7): 7828-7838. DOI:10.1364/OE.25.007828
8 Zhou L, Li S Y, Liao W L, et al. Ion beam technology : figuring, smoothing and adding for high-precision optics[C]//Proceedings of Optical Fabrication and Testing 2014, Kohala Coast, Hawaii, 2014: 4-6.
9 Mori Y, Yamauchi K, Hirose K, et al. Numerically controlled EEM (Elastic Emission Machining) system for ultraprecision figuring and smoothing of aspherical surfaces[M]//Scheel H J, Fukuda T. Crystal Growth Technology. Norwich: John Wiley & Sons, Ltd, 2013: 2.
10 https://www.j-tec.co.jp/english/optical/high-precision-x-ray-mirror/.
11 Mori Y, Yamauchi K, Yamamura K, et al. Development of plasma chemical vaporization machining[J]. Review of Scientific Instruments, 2000, 71(12): 4627-4632. DOI:10.1063/1.1322581
12 Takino H, Shibata N, Itoh H, et al. Computer numerically controlled plasma chemical vaporization machining with a pipe electrode for optical fabrication[J]. Applied Optics, 1998, 37(22): 5198-5210. DOI:10.1364/AO.37.005198
13 Yamauchi K, Yamamura K, Mimura H, et al. Fabrication technology of ultraprecise mirror optics to realize hard X-ray nanobeam[J]. Proceedings of SPIE, 2004, 5533: 116-123. DOI:10.1117/12.567501
14 https://www.j-tec.co.jp/english/optical/high-precision-x-ray-mirror/.
15 Arima K, Hara H, Murata J, et al. Atomic-scale flattening of SiC surfaces by electroless chemical etching in HF solution with Pt catalyst[J]. Applied Physics Letters, 2007, 90(20): 202106. DOI:10.1063/1.2739084
16 Kuwahara Y, Saito A, Arima K, et al. Center of excellence for atomically controlled fabrication technology[J]. Journal of Nanoscience and Nanotechnology, 2011, 11(4): 2763-2776. DOI:10.1166/jnn.2011.3891
17 Qian J, Manton J, Bean S, et al. Metrology of variable-line-spacing x-ray gratings using the APS Long Trace Profiler[C]// Society of Photo-optical Instrumentation Engineers. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, 2017.
20 Siewert F, Buchheim J, Zeschke T, et al. On the characterization of ultra-precise X-ray optical components: advances and challenges in ex situ metrology[J]. Journal of Synchrotron Radiation, 2014, 21(5): 968-975. DOI:10.1107/S1600577514016221
21 Rommeveaux A, Assoufid L, Ohashi H, et al. Second metrology round-robin of APS, ESRF and SPring-8 laboratories of elliptical and spherical hard-x-ray mirrors[J]. Proceedings of SPIE, 2007, 6704: 67040B. DOI:10.1117/12.736171
23 高能同步辐射光源验证装置高精度光学元件面形检测子系统工艺测试报告[R]. 2017-12-15.
24 Lacey I, Artemiev N A, Domning E E, et al. The developmental long trace profiler (DLTP) optimized for metrology of side-facing optics at the ALS[C]// Advances in Metrology for X-Ray andEUV Optics V. International Society for Optics and Photonics, 2014.
25 http://www.optophase.com/Brochure/OEG/Flatscan/NOM-Darst.f.Liz.Ang.-OEG.pdf.
27 Yamauchi K, Yamamura K, Mimura H, et al. Microstitching interferometry for x-ray reflective optics[J]. Review of Scientific Instruments, 2003, 74(5): 2894-2898. DOI:10.1063/1.1569405
28 Mimura H, Yumoto H, Matsuyama S, et al. Relative angle determinable stitching interferometry for hard x-ray reflective optics[J]. Review of Scientific Instruments, 2005, 76(4): 045102. DOI:10.1063/1.1868472
29 Yumoto H, Mimura H, Kimura T, et al. Stitching interferometric metrology for steeply curved x-ray mirrors[J]. Surf. Interface Anal., 2008, 40(6-7):1023-1027. DOI:10.1002/sia.2807
31 Yumoto H, Koyama T, Matsuyama S, et al. Stitching interferometry for ellipsoidal x-ray mirrors[J]. Review of Scientific Instruments, 2016, 87(5): 51905. DOI:10.1063/1.4950714
32 Assoufid L, Qian J, Kewish C M, et al. A microstitching interferometer for evaluating the surface profile of precisely figured x-ray K-B mirrors[J]. Proceedings of SPIE, 2007, 6704: 670406. DOI:10.1117/12.736384
33 Asundi A K, Ohashi H, Assoufid L, et al. Surface slope metrology of highly curved X-ray optics with an interferometric microscope[C]// Advances in Metrology for X-Ray and EUV Optics VⅡ, 2017: 1-10.
34 Khounsary A M, Mimura H, Dinger U, et al. Microstitching interferometry for nanofocusing mirror optics[C]//Advances in Mirror Technology for X-Ray, EUV Lithography, Laser, and Other Applications Ⅱ, 2004: 170-180.
35 Rommeveaux A, Barrett R. Micro-stitching interferometry at the ESRF[J]. Nucl. Instrum. Methods Phys. Res., Sect.A, 2010, 616(2-3): 183-187. DOI:10.1016/j.nima.2009.11.020
36 Vivo A, Lantelme B, Baker R, et al. Stitching methods at the European Synchrotron Radiation Facility (ESRF)[J]. Review of Scientific Instruments, 2016, 87(5): 51908. DOI:10.1063/1.4950745
37 Li M. Optical metrology at BSRF[J]. Proceedings of SPIE, 2016.
38 Huang L, Xue J, Gao B, et al. One-dimensional angular-measurement-based stitching interferometry[J]. Optics Express. 2018, 26(8): 9882. DOI:10.1364/OE.26.009882
39 Huang L, Idir M, Zuo C, et al. Two-dimensional stitching interferometry based on tilt measurement[J]. Optics Express, 2018, 26(18): 23278-23286. DOI:10.1364/OE.26.023278
41 Xu W, Liu Y, Marcelli A, et al. The complexity of thermoelectric materials: why we need powerful and brilliant synchrotron radiation sources?[J]. Materials Today Physics, 2018, 6: 68-82. DOI:10.1016/j.mtphys.2018.09.002
Export Citations as:
For
Get Citation:
Li Ming, Wu Jieli, Wu Yongqian, et al. A review on the fabrication technology of X-ray reflector[J]. Opto-Electronic Engineering, 2020, 47(8): 200205.