Zhang Y F, Li X, Lv W C, et al. Link structure of underwater wireless optical communication and progress on performance optimization[J]. Opto-Electron Eng, 2020, 47(9): 190734. doi: 10.12086/oee.2020.190734
Citation: Zhang Y F, Li X, Lv W C, et al. Link structure of underwater wireless optical communication and progress on performance optimization[J]. Opto-Electron Eng, 2020, 47(9): 190734. doi: 10.12086/oee.2020.190734

Link structure of underwater wireless optical communication and progress on performance optimization

    Fund Project: Supported by National Key R&D Program of China (2016YFC0302403) and Strategic Priority Research Program of the Chinese Academy of Sciences (XDA22030208)
More Information
  • Underwater wireless optical communication (UWOC) can provide a high-speed and flexible communication link for underwater platforms. This paper introduces the basic structure of a UWOC link and points out the optimization schemes for a UWOC system. Absorption, scattering, and turbulence will affect the performance of a UWOC system. A comprehensive study of channel characteristics can guide the design of transmitters, receivers, and related signal processing technologies. The performance of UWOC can also be optimized by multiplexing technologies, single-photon detection technologies, and alignment systems. A comprehensive test platform could provide a necessary test environment for further sea trials and the practical applications of UWOC. The paper is expected to serve as a guideline for researchers related to UWOC.
  • 加载中
  • [1] Vedachalam N, Ramesh R, Jyothi V B N, et al. Autonomous underwater vehicles-challenging developments and technological maturity towards strategic swarm robotics systems[J]. Marine Georesources & Geotechnology, 2019, 37(5): 525–538.

    Google Scholar

    [2] Saeed N, Celik A, Al-Naffouri T Y, et al. Underwater optical wireless communications, networking, and localization: a survey[J]. Ad Hoc Networks, 2019, 94: 101935. doi: 10.1016/j.adhoc.2019.101935

    CrossRef Google Scholar

    [3] Stojanovic M, Preisig J. Underwater acoustic communication channels: propagation models and statistical characterization[J]. IEEE Communications Magazine, 2009, 47(1): 84–89. doi: 10.1109/MCOM.2009.4752682

    CrossRef Google Scholar

    [4] Au W W, Nachtigall P E, Pawloski J L. Acoustic effects of the ATOC signal (75 Hz, 195 dB) on dolphins and whales[J]. The Journal of the Acoustical Society of America, 1997, 101(5): 2973–2977. doi: 10.1121/1.419304

    CrossRef Google Scholar

    [5] Zeng Z Q, Fu S, Zhang H H, et al. A survey of underwater optical wireless communications[J]. IEEE Communications Surveys & Tutorials, 2017, 19(1): 204–238.

    Google Scholar

    [6] Strand M P. Imaging model for underwater range-gated imaging systems[J]. Proceedings of SPIE, 1991, 1537: 151–160. doi: 10.1117/12.48880

    CrossRef Google Scholar

    [7] Tang S J, Dong Y H, Zhang X D. Impulse response modeling for underwater wireless optical communication links[J]. IEEE Transactions on Communications, 2014, 62(1): 226–234. doi: 10.1109/TCOMM.2013.120713.130199

    CrossRef Google Scholar

    [8] Karp S. Optical communications between underwater and above surface (Satellite) terminals[J]. IEEE Transactions on Communications, 1976, 24(1): 66–81. doi: 10.1109/TCOM.1976.1093200

    CrossRef Google Scholar

    [9] Longacre J R, Freeman D E, Snow J B. High-data-rate underwater laser communications[J]. Proceedings of SPIE, 1990, 1302: 433–439. doi: 10.1117/12.21462

    CrossRef Google Scholar

    [10] Snow J B, Flatley J P, Freeman D E, et al. Underwater propagation of high-data-rate laser communications pulses[J]. Proceedings of SPIE, 1992, 1750: 419–427. doi: 10.1117/12.140670

    CrossRef Google Scholar

    [11] Hanson F, Radic S. High bandwidth underwater optical communication[J]. Applied Optics, 2008, 47(2): 277–283. doi: 10.1364/AO.47.000277

    CrossRef Google Scholar

    [12] Lu D L, Kan J J, Fullerton E E, et al. Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials[J]. Nature Nanotechnology, 2014, 9(1): 48–53.

    Google Scholar

    [13] Shen C, Guo Y J, Oubei H M, et al. 20-meter underwater wireless optical communication link with 1.5 Gbps data rate[J]. Optics Express, 2016, 24(22): 25502–25509. doi: 10.1364/OE.24.025502

    CrossRef Google Scholar

    [14] Xu J, Song Y H, Yu X Y, et al. Underwater wireless transmission of high-speed QAM-OFDM signals using a compact red-light laser[J]. Optics Express, 2016, 24(8): 8097–8109. doi: 10.1364/OE.24.008097

    CrossRef Google Scholar

    [15] Lu H H, Li C Y, Lin H H, et al. An 8 m/9.6 Gbps underwater wireless optical communication system[J]. IEEE Photonics Journal, 2016, 8(5): 7906107.

    Google Scholar

    [16] Kong M W, Lv W C, Ali T, et al. 10-m 9.51-Gb/s RGB laser diodes-based WDM underwater wireless optical communication[J]. Optics Express, 2017, 25(17): 20829–20834. doi: 10.1364/OE.25.020829

    CrossRef Google Scholar

    [17] Huang Y F, Tsai C T, Chi Y C, et al. Filtered multicarrier OFDM encoding on blue laser diode for 14.8-Gbps seawater transmission[J]. Journal of Lightwave Technology, 2018, 36(9): 1739–1745. doi: 10.1109/JLT.2017.2782840

    CrossRef Google Scholar

    [18] Li C Y, Lu H H, Tsai W S, et al. 16 Gb/s PAM4 UWOC system based on 488-nm LD with light injection and optoelectronic feedback techniques[J]. Optics Express, 2017, 25(10): 11598–11605. doi: 10.1364/OE.25.011598

    CrossRef Google Scholar

    [19] Liu X Y, Yi S Y, Zhou X L, et al. 34.5 m underwater optical wireless communication with 2.70 Gbps data rate based on a green laser diode with NRZ-OOK modulation[J]. Optics Express, 2017, 25(22): 27937–27947. doi: 10.1364/OE.25.027937

    CrossRef Google Scholar

    [20] Fei C, Hong X J, Zhang G W, et al. 16.6 Gbps data rate for underwater wireless optical transmission with single laser diode achieved with discrete multi-tone and post nonlinear equalization[J]. Optics Express, 2018, 26(26): 34060–34069. doi: 10.1364/OE.26.034060

    CrossRef Google Scholar

    [21] Fei C, Zhang J W, Zhang G W, et al. Demonstration of 15-M 7.33-Gb/s 450-nm underwater wireless optical discrete multitone transmission using post nonlinear equalization[J]. Journal of Lightwave Technology, 2018, 36(3): 728–734. doi: 10.1109/JLT.2017.2780841

    CrossRef Google Scholar

    [22] Hong X J, Fei C, Zhang G W, et al. Discrete multitone transmission for underwater optical wireless communication system using probabilistic constellation shaping to approach channel capacity limit[J]. Optics Letters, 2019, 44(3): 558–561. doi: 10.1364/OL.44.000558

    CrossRef Google Scholar

    [23] Lu C H, Wang J M, Li S B, et al. 60m/2.5Gbps underwater optical wireless communication with NRZ-OOK modulation and digital nonlinear equalization[C]//Proceedings of 2019 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 2019: 1–2.

    Google Scholar

    [24] Wang J M, Lu C H, Li S B, et al. 100 m/500 Mbps underwater optical wireless communication using an NRZ-OOK modulated 520 nm laser diode[J]. Optics Express, 2019, 27(9): 12171–12181. doi: 10.1364/OE.27.012171

    CrossRef Google Scholar

    [25] Bluecomm 100-wireless underwater optical communication[EB/OL]. https://www.sonardyne.com/product/bluecomm-underwater-optical-communication-system/.

    Google Scholar

    [26] Baykal Y. Scintillations of LED sources in oceanic turbulence[J]. Applied Optics, 2016, 55(31): 8860–8863. doi: 10.1364/AO.55.008860

    CrossRef Google Scholar

    [27] Shi J Y, Zhu X, Wang F M, et al. Net data rate of 14.6 Gbit/s underwater VLC utilizing silicon substrate common-anode five primary colors LED[C]//Proceedings of 2019 Optical Fiber Communications Conference and Exhibition, San Diego, CA, USA, 2019: 1–3.

    Google Scholar

    [28] Wang F M, Liu Y F, Jiang F Y, et al. High speed underwater visible light communication system based on LED employing maximum ratio combination with multi-PIN reception[J]. Optics Communications, 2018, 425: 106–112. doi: 10.1016/j.optcom.2018.04.073

    CrossRef Google Scholar

    [29] Tian P F, Liu X Y, Yi S Y, et al. High-speed underwater optical wireless communication using a blue GaN-based micro-LED[J]. Optics Express, 2017, 25(2): 1193–1201. doi: 10.1364/OE.25.001193

    CrossRef Google Scholar

    [30] Xu J, Kong M W, Lin A B, et al. Directly modulated green-light diode-pumped solid-state laser for underwater wireless optical communication[J]. Optics Letters, 2017, 42(9): 1664–1667. doi: 10.1364/OL.42.001664

    CrossRef Google Scholar

    [31] Li C Y, Lu H H, Tsai W S, et al. A 5 m/25 Gbps underwater wireless optical communication system[J]. IEEE Photonics Journal, 2018, 10(3): 7904909.

    Google Scholar

    [32] Kong M W, Chen Y F, Sarwar R, et al. Underwater wireless optical communication using an arrayed transmitter/receiver and optical superimposition-based PAM-4 signal[J]. Optics Express, 2018, 26(3): 3087–3097. doi: 10.1364/OE.26.003087

    CrossRef Google Scholar

    [33] Zhuang B, Li C, Wu N, et al. First demonstration of 400Mb/s PAM4 signal transmission over 10-meter underwater channel using a blue LED and a digital linear pre-equalizer[C]//Proceedings of 2017 Conference on Lasers and Electro-Optics, San Jose, CA, USA, 2017: 1–2.

    Google Scholar

    [34] Sui M H, Zhou Z G. The modified PPM modulation for underwater wireless optical communication[C]//Proceedings of 2009 International Conference on Communication Software and Networks, Macau, China, 2009: 173–177.

    Google Scholar

    [35] Hu S, Mi L, Zhou T H, et al. 35.88 attenuation lengths and 3.32 bits/photon underwater optical wireless communication based on photon-counting receiver with 256-PPM[J]. Optics Express, 2018, 26(17): 21685–21699. doi: 10.1364/OE.26.021685

    CrossRef Google Scholar

    [36] 杜劲松.基于LDPC编码与PPM调制的水下光通信研究[D].南京: 南京邮电大学, 2017.

    Google Scholar

    Du J S. Research on underwater optical communication based on LDPC and PPM[D]. Nanjing: Nanjing University of Posts And Telecommunications, 2017.http://cdmd.cnki.com.cn/Article/CDMD-10293-1017859218.htm

    Google Scholar

    [37] Mi X L, Dong Y H. Polarized digital pulse interval modulation for underwater wireless optical communications[C]//Proceedings of OCEANS 2016 - Shanghai, Shanghai, China, 2016: 1–4.

    Google Scholar

    [38] 肖嵩.无线信道中的联合信源信道编码研究[D].西安: 西安电子科技大学, 2004.

    Google Scholar

    Xiao S. Researches on joint source channel coding in wireless channel[D]. Xi'an: Xidian University, 2004.

    Google Scholar

    [39] Cox W C, Simpson J A, Domizioli C P, et al. An underwater optical communication system implementing Reed-Solomon channel coding[C]//Proceedings of OCEANS 2008, Quebec City, QC, Canada, 2008: 1–6.

    Google Scholar

    [40] Mattoussi F, Khalighi M A, Bourennane S. Improving the performance of underwater wireless optical communication links by channel coding[J]. Applied Optics, 2018, 57(9): 2115–2120. doi: 10.1364/AO.57.002115

    CrossRef Google Scholar

    [41] Campbell J C. Recent advances in telecommunications avalanche photodiodes[J]. Journal of Lightwave Technology, 2007, 25(1): 109–121. doi: 10.1109/JLT.2006.888481

    CrossRef Google Scholar

    [42] Cova S, Ghioni M, Lacaita A, et al. Avalanche photodiodes and quenching circuits for single-photon detection[J]. Applied Optics, 1996, 35(12): 1956–1976. doi: 10.1364/AO.35.001956

    CrossRef Google Scholar

    [43] Zhang Z J, Zhao Y, Zhang J D, et al. Ranging accuracy improvement of time-correlated signal-photon counting lidar[J]. Proceedings of SPIE, 2017, 10605: 106050C.

    Google Scholar

    [44] Li C, Wang B K, Wang P L, et al. Generation and transmission of 745Mb/s ofdm signal using a single commercial blue LED and an analog post-equalizer for underwater optical wireless communications[C]//Proceedings of 2016 Asia Communications and Photonics Conference, Wuhan, China, 2016: 1–3.

    Google Scholar

    [45] Zhang Z Y, Lai Y J, Lv J L, et al. Over 700 MHz –3 dB bandwidth UOWC system based on blue HV-LED with T-bridge pre-equalizer[J]. IEEE Photonics Journal, 2019, 11(3): 7903812.

    Google Scholar

    [46] Ren Y X, Li L, Wang Z, et al. Orbital angular momentum-based space division multiplexing for high-capacity underwater optical communications[J]. Scientific Reports, 2016, 6: 33306. doi: 10.1038/srep33306

    CrossRef Google Scholar

    [47] Mobley C D. Light and Water: Radiative Transfer in Natural Waters[M]. New York: Academic Press, 1994.

    Google Scholar

    [48] Petzold T J. Volume Scattering Functions for Selected Ocean Waters[M]. San Diego: Scripps Institution of Oceanography, 1972.

    Google Scholar

    [49] Cochenour B M, Mullen L J, Laux A E. Characterization of the beam-spread function for underwater wireless optical communications links[J]. IEEE Journal of Oceanic Engineering, 2008, 33(4): 513–521. doi: 10.1109/JOE.2008.2005341

    CrossRef Google Scholar

    [50] Jaruwatanadilok S. Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory[J]. IEEE Journal on Selected areas in Communications, 2008, 26(9): 1620–1627. doi: 10.1109/JSAC.2008.081202

    CrossRef Google Scholar

    [51] Gabriel C, Khalighi M A, Bourennane S, et al. Monte-carlo-based channel characterization for underwater optical communication systems[J]. IEEE/OSA Journal of Optical Communications and Networking, 2013, 5(1): 1–12.

    Google Scholar

    [52] Haltrin V I. One-parameter two-term Henyey-Greenstein phase function for light scattering in seawater[J]. Applied Optics, 2002, 41(6): 1022–1028. doi: 10.1364/AO.41.001022

    CrossRef Google Scholar

    [53] Sahu S K, Shanmugam P. Semi-analytical modeling and parameterization of particulates-in-water phase function for forward angles[J]. Optics Express, 2015, 23(17): 22291–22307. doi: 10.1364/OE.23.022291

    CrossRef Google Scholar

    [54] Sahu S K, Shanmugam P. A theoretical study on the impact of particle scattering on the channel characteristics of underwater optical communication system[J]. Optics Communications, 2018, 408: 3–14. doi: 10.1016/j.optcom.2017.06.030

    CrossRef Google Scholar

    [55] Vali Z, Gholami A, Ghassemlooy Z, et al. Experimental study of the turbulence effect on underwater optical wireless communications[J]. Applied Optics, 2018, 57(28): 8314–8319. doi: 10.1364/AO.57.008314

    CrossRef Google Scholar

    [56] Ooi B S, Sun X B, Alkhazragi O, et al. Visible diode lasers for high bitrate underwater wireless optical communications[C]//Proceedings of Optical Fiber Communication Conference 2019, San Diego, CA, USA, 2019.

    Google Scholar

    [57] Yi X, Li Z, Liu Z J. Underwater optical communication performance for laser beam propagation through weak oceanic turbulence[J]. Applied Optics, 2015, 54(6): 1273–1278. doi: 10.1364/AO.54.001273

    CrossRef Google Scholar

    [58] Oubei H M, Zedini E, ElAfandy R T, et al. Efficient weibull channel model for salinity induced turbulent underwater wireless optical communications[C]//Proceedings of 2017 Opto-Electronics and Communications Conference (OECC) and Photonics Global Conference, Singapore, Singapore, 2017: 1–2.

    Google Scholar

    [59] Oubei H M, Zedini E, ElAfandy R T, et al. Simple statistical channel model for weak temperature-induced turbulence in underwater wireless optical communication systems[J]. Optics Letters, 2017, 42(13): 2455–2458. doi: 10.1364/OL.42.002455

    CrossRef Google Scholar

    [60] Oubei H M, Duran J R, Janjua B, et al. 4.8 Gbit/s 16-QAM-OFDM transmission based on compact 450-nm laser for underwater wireless optical communication[J]. Optics Express, 2015, 23(18): 23302–23309. doi: 10.1364/OE.23.023302

    CrossRef Google Scholar

    [61] Xu J, Lin A B, Yu X Y, et al. Underwater laser communication using an OFDM-modulated 520-nm laser diode[J]. IEEE Photonics Technology Letters, 2016, 28(20): 2133–2136.

    Google Scholar

    [62] Sullivan S A. Experimental study of the absorption in distilled water, artificial sea water, and heavy water in the visible region of the spectrum[J]. Journal of the Optical Society of America, 1963, 53(8): 962–968.

    Google Scholar

    [63] Gilbert G D, Stoner T R, Jernigan J L. Underwater experiments on the polarization, coherence, and scattering properties of a pulsed blue-green laser[J]. Proceedings of SPIE, 1966, 7: 8–14.

    Google Scholar

    [64] Duntley S Q. Light in the sea[J]. Journal of the Optical Society of America, 1963, 53(2): 214–233.

    Google Scholar

    [65] Baghdady J, Miller K, Morgan K, et al. Multi-gigabit/s underwater optical communication link using orbital angular momentum multiplexing[J]. Optics Express, 2016, 24(9): 9794–9805.

    Google Scholar

    [66] 王超.水下可见光通信单光子检测关键技术研究[D].郑州: 战略支援部队信息工程大学, 2018.

    Google Scholar

    Wang C. Research on the key technology of singlephoton detection in underwater visible light communications[D]. Zhengzhou: Information Engineering University, 2018.http://cdmd.cnki.com.cn/Article/CDMD-91037-1018841747.htm

    Google Scholar

    [67] Wang C, Yu H Y, Zhu Y J, et al. Experimental study on SPAD-based VLC systems with an LED status indicator[J]. Optics Express, 2017, 25(23): 28783–28793.

    Google Scholar

    [68] Wang C, Yu H Y, Zhu Y J. A long distance underwater visible light communication system with single photon avalanche diode[J]. IEEE Photonics Journal, 2016, 8(5): 7906311.

    Google Scholar

    [69] Wang J L, Yang X Q, Lv W C, et al. Underwater wireless optical communication based on multi-pixel photon counter and OFDM modulation[J]. Optics Communications, 2019, 451: 181–185.

    Google Scholar

    [70] Hamza T, Khalighi M A, Bourennane S, et al. On the suitability of employing silicon photomultipliers for underwater wireless optical communication links[C]//Proceedings of the 2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing, Prague, Czech Republic, 2016: 1–5.

    Google Scholar

    [71] Khalighi M A, Hamza T, Bourennane S, et al. Underwater wireless optical communications using silicon photo-multipliers[J]. IEEE Photonics Journal, 2017, 9(4): 7905310.

    Google Scholar

    [72] Shen J N, Wang J L, Yu C Y, et al. Single LED-based 46-m underwater wireless optical communication enabled by a multi-pixel photon counter with digital output[J]. Optics Communications, 2019, 438: 78–82.

    Google Scholar

    [73] Shen J N, Wang J L, Chen X, et al. Towards power-efficient long-reach underwater wireless optical communication using a multi-pixel photon counter[J]. Optics Express, 2018, 26(18): 23565–23571.

    Google Scholar

    [74] 韩彪, 赵卫, 汪伟, 等.面向水下应用的改进型光子计数通信方法[J].光学学报, 2016, 36(8): 0806004.

    Google Scholar

    Han B, Zhao W, Wang W, et al. Modified photon counting communication method for underwater application[J]. Acta Optica Sinica, 2016, 36(8): 0806004.

    Google Scholar

    [75] Tang S J, Dong Y H, Zhang X D. On link misalignment for underwater wireless optical communications[J]. IEEE Communications Letters, 2012, 16(10): 1688–1690.

    Google Scholar

    [76] Zhang H H, Dong Y H. Link misalignment for underwater wireless optical communications[C]//Proceedings of 2015 Advances in Wireless and Optical Communications, Riga, Latvia, 2015: 215–218.

    Google Scholar

    [77] Huang X, Yang F, Song J. Hybrid LD and LED-based underwater optical communication: state-of-the-art, opportunities, challenges, and trends[J]. Chinese Optics Letters, 2019, 17(10): 100002.

    Google Scholar

    [78] Cai C K, Zhao Y F, Zhang J Y, et al. Experimental demonstration of an underwater wireless optical link employing orbital angular momentum (OAM) modes with fast auto-alignment system[C]//Proceedings of Optical Fiber Communication Conference 2019, San Diego, CA, USA, 2019: 1–3.

    Google Scholar

    [79] Kong M W, Sun B, Sarwar R, et al. Underwater wireless optical communication using a lens-free solar panel receiver[J]. Optics Communications, 2018, 426: 94–98.

    Google Scholar

    [80] Kong M W, Lin J M, Kang C H, et al. Toward self-powered and reliable visible light communication using amorphous silicon thin-film solar cells[J]. Optics Express, 2019, 27(24): 34542–34551.

    Google Scholar

    [81] Zhang H H, Dong Y H, Hui L K. On capacity of downlink underwater wireless optical MIMO systems with random sea surface[J]. IEEE Communications Letters, 2015, 19(12): 2166–2169.

    Google Scholar

    [82] Zhang H H, Dong Y H. Impulse response modeling for general underwater wireless optical MIMO links[J]. IEEE Communications Magazine, 2016, 54(2): 56–61.

    Google Scholar

    [83] Jamali M V, Salehi J A. On the BER of multiple-input multiple-output underwater wireless optical communication systems[C]//Proceedings of the 2015 4th International Workshop on Optical Wireless Communications, Istanbul, Turkey, 2015: 26–30.

    Google Scholar

    [84] Jamali M V, Nabavi P, Salehi J A. MIMO underwater visible light communications: Comprehensive channel study, performance analysis, and multiple-symbol detection[J]. IEEE Transactions on Vehicular Technology, 2018, 67(9): 8223–8237.

    Google Scholar

    [85] Jamali M V, Salehi J A, Akhoundi F. Performance studies of underwater wireless optical communication systems with spatial diversity: MIMO scheme[J]. IEEE Transactions on Communications, 2017, 65(3): 1176–1192.

    Google Scholar

    [86] Cossu G, Sturniolo A, Messa A, et al. Sea-trial of optical ethernet modems for underwater wireless communications[J]. Journal of Lightwave Technology, 2018, 36(23): 5371–5380.

    Google Scholar

    [87] Sawa T, Nishimura N, Tojo K, et al. Practical performance and prospect of underwater optical wireless communication:——results of optical characteristic measurement at visible light band under water and communication tests with the prototype modem in the sea[J]. IEICE Transactions on Fundamentals of Electronics Communications and Computer Sciences, 2019, E102-A(1): 156–167. doi: 10.1587/transfun.E102.A.156

    CrossRef Google Scholar

    [88] Akhoundi F, Salehi J A, Tashakori A. Cellular underwater wireless optical CDMA network: performance analysis and implementation concepts[J]. IEEE Transactions on Communications, 2015, 63(3): 882–891.

    Google Scholar

    [89] Vavoulas A, Sandalidis H G, Varoutas D. Underwater optical wireless networks: ak-connectivity analysis[J]. IEEE Journal of Oceanic Engineering, 2014, 39(4): 801–809.

    Google Scholar

    [90] Jamali M V, Akhoundi F, Salehi J A. Performance characterization of relay-assisted wireless optical CDMA networks in turbulent underwater channel[J]. IEEE Transactions on Wireless Communications, 2016, 15(6): 4104–4116.

    Google Scholar

    [91] Jamali M V, Chizari A, Salehi J A. Performance analysis of multi-hop underwater wireless optical communication systems[J]. IEEE Photonics Technology Letters, 2017, 29(5): 462–465.

    Google Scholar

    [92] Celik A, Saeed N, Al-Naffouri T Y, et al. Modeling and performance analysis of multihop underwater optical wireless sensor networks[C]//Proceedings of 2018 IEEE Wireless Communications and Networking Conference, Barcelona, Spain, 2018: 1–6.

    Google Scholar

    [93] Xu J, Sun B, Lyu W C, et al. Underwater fiber–wireless communication with a passive front end[J]. Optics Communications, 2017, 402: 260–264.

    Google Scholar

    [94] Xu J, Sun B, Kong M W, et al. Underwater wireless optical communication using a blue-light leaky feeder[J]. Optics Communications, 2017, 397: 51–54.

    Google Scholar

  • Overview: Ocean exploration urgently needs a more flexible and stable way of communication without cables. Underwater wireless optical communication (UWOC) owns strong competitiveness with the features of large capacity, strong anti-interference ability, and good confidentiality. With such advantages, UWOC has become an important scientific theme attracting worldwide attention. This paper introduces the recent research progress and basic link structures of UWOC, including transmitter, receiver, and a challenging channel. Light emitting diode (LED) and laser diode (LD) are two kinds of light sources commonly used in the UWOC system. LEDs, with a large divergence angle and low cost, are widely used in short-range UWOC. On the other hand, LDs characterized by highly coherent, directional output and larger bandwidth could realize a longer transmission distance at a higher data rate. For the modulation formats, on-off keying (OOK) is widely used in the UWOC systems. Other modulation formats are also used to improve the performance of the system. Channel coding like Reed-Solomon (RS) code, low density parity check (LDPC) code can maintain a stable communication link. At the receiver of UWOC, the most widely used optical detectors are positive-intrinsic-negative (PIN) diode and avalanche photodiode (APD). In addition, single photon avalanche diode (SPAD) and multi-pixel photon counter (MPPC) attract special attention due to ultra-high sensitivity for long-reach UWOC systems. The absorption, scattering, and turbulence in water lead to serious interference and degradation to the performance of UWOC. Therefore, a comprehensive study of the UWOC channel is essential for the design of a UWOC system. For UWOC channel modeling, numerical methods with lower computational complexity, are commonly used. This paper also explores system optimization schemes for UWOC. Multiplexing technologies, such as orthogonal frequency division multiplexing (OFDM), wavelength division multiplexing (WDM), and orbital angular momentum (OAM), can enhance the performance of UWOC by making full use of different optical degrees of freedom. The coverage of the UWOC link can be extended by using single-photon detectors. The underwater wireless optical network enables the connection of massive underwater vehicles, submarines, and sensors in a wider area. UWOC could also be combined with optical fiber communication to realize a longer transmission distance and a more flexible network. Test platforms are also useful for practical UWOC applications. In the future, UWOC is envisioned to play an increasingly important role in ocean exploration. This review is expected to be helpful to the researchers in this field.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(7)

Tables(1)

Article Metrics

Article views(12908) PDF downloads(4013) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint