Guan C L, Zhang X J, Deng J M, et al. Deformable mirror technologies at Institute of Optics and Electronics, Chinese Academy of Sciences[J]. Opto-Electron Eng, 2020, 47(10): 200337. doi: 10.12086/oee.2020.200337
Citation: Guan C L, Zhang X J, Deng J M, et al. Deformable mirror technologies at Institute of Optics and Electronics, Chinese Academy of Sciences[J]. Opto-Electron Eng, 2020, 47(10): 200337. doi: 10.12086/oee.2020.200337

Deformable mirror technologies at Institute of Optics and Electronics, Chinese Academy of Sciences

More Information
  • Deformable mirror is the core component of the adaptive optics system and the primary research object for the research of adaptive optics technology. In this review, the research history of adaptive optics technology, especially the deformable mirror technologies of IOE is reviewed and the early development of our deformable mirror technology is briefly described. The application of the deformable mirror in the inertial confinement fusion (ICF) system of China is introduced and the typical multi-channel deformable mirror technology and application results in the field of astronomical optical observation is also described. Then we introduce the application of compact deformable mirror in biomedical research. At last, some new research directions of deformable mirror technology are revealed.
  • 加载中
  • [1] Gaffard J P, Jagourel P, Gigan P. Adaptive optics: description of available components at Laserdot[J]. Proceedings of SPIE, 1994, 2201: 688–702. doi: 10.1117/12.176105

    CrossRef Google Scholar

    [2] Wirth A, Cavaco J, Bruno T, et al. Deformable mirror technologies at AOA xinetics[J]. Proceedings of SPIE, 2013, 8780: 87800M. doi: 10.1117/12.2018031

    CrossRef Google Scholar

    [3] Sinquin J C, Bastard A, Beaufort E, et al. Recent results and future DMs for astronomy and for space applications at CILAS[J]. Proceedings of SPIE, 2014, 9184: 91480G.

    Google Scholar

    [4] Charton J, Bitenc U, Curis J F, et al. Recent improvements of high density magnetic deformable mirrors: faster, larger and stronger[J]. Proceedings of SPIE, 2014, 9148: 914825.

    Google Scholar

    [5] Fernández E, Artal P. Membrane deformable mirror for adaptive optics: performance limits in visual optics[J]. Optics Express, 2003, 11(9): 1056–1069. doi: 10.1364/OE.11.001056

    CrossRef Google Scholar

    [6] Kudryashov A V, Kulakov V B, Kotsuba Y V, et al. Low-cost adaptive optical devices for multipurpose applications[J]. Proceedings of SPIE, 1999, 3688: 469–475. doi: 10.1117/12.337555

    CrossRef Google Scholar

    [7] Hardy J W, Lefebvre J E, Koliopoulos C L. Real-time atmospheric compensation[J]. Journal of the Optical Society of America, 1977, 67(3): 360–369. doi: 10.1364/JOSA.67.000360

    CrossRef Google Scholar

    [8] Hardy J W. Active optics: a new technology for the control of light[C]//Proceedings of the IEEE, 1978, 66: 651–697.

    Google Scholar

    [9] 姜文汉.光电技术研究所的自适应光学技术[J].光电工程, 1995, 22(1): 1–13.

    Google Scholar

    Jiang W H. Adaptive optics techniques investigations in institute of optics and electronics[J]. Opto-Electronic Engineering, 1995, 22(1): 1–13.

    Google Scholar

    [10] 凌宁, 张正荣.多元整体压电变形反射镜(二)—变形反射镜的工作寿命[J].光学工程, 1985(2): 22–28.

    Google Scholar

    Lin N, Zhang Z R. Multielement monolithic piezoelectric deformble mirror (Ⅱ)—working life of deformable mirror[J]. Optical Engineering, 1985(2): 22–28.

    Google Scholar

    [11] 凌宁.多元整体压电变形反射镜(研究阶段进展报告)[J].光学工程, 1982(6): 44–52.

    Google Scholar

    [12] 姜文汉.自适应光学发展综述[J].光电工程, 2018, 45(3): 170489. doi: 10.12086/oee.2018.170489

    CrossRef Google Scholar

    Jiang W H. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 170489. doi: 10.12086/oee.2018.170489

    CrossRef Google Scholar

    [13] Jiang W H, Huang S F, Ling N, et al. Hill-climbing wavefront correction system for large laser engineering[J]. Proceedings of SPIE, 1988, 965: 266–272.

    Google Scholar

    [14] 姜文汉, 李明全, 汤国茂, 等.星体目标自适应光学成象补偿[J].光电工程, 1995, 22(1): 23–30.

    Google Scholar

    Jiang W H, Li M Q, Tang G M, et al. The compensated imaging for stars by adaptive optics[J]. Opto-Electronic Engineering, 1995, 22(1): 23–30.

    Google Scholar

    [15] Jiang W H, Li M Q, Tang G M, et al. Adaptive optics image compensation experiment for star objects[J]. Proceedings of SPIE, 1993, 1920: 381–391. doi: 10.1117/12.152688

    CrossRef Google Scholar

    [16] 姜文汉, 王春红, 凌宁, 等. 61单元自适应光学系统[J].量子电子学报, 1998, 15(2): 193–199.

    Google Scholar

    Jiang W H, Wang C H, Ling N, et al. 61 element adaptive optical system[J]. Chinese Journal of Quantum Electronics, 1998, 15(2): 193–199.

    Google Scholar

    [17] 姜文汉, 杨泽平, 官春林, 等.自适应光学技术在惯性约束聚变领域应用的新进展[J].中国激光, 2009, 36(7): 1625–1634.

    Google Scholar

    Jiang W H, Yang Z P, Guan C L, et al. New progress on adaptive optics in inertial confinement fusion facility[J]. Chinese Journal of Lasers, 2009, 36(7): 1625–1634.

    Google Scholar

    [18] Ao M W, Yang P, Yang Z O, et al. A method of aberration measurement and correction for entire beam path of ICF beam path[J]. Proceedings of SPIE, 2007, 6823: 68230I. doi: 10.1117/12.755454

    CrossRef Google Scholar

    [19] Jiang W H, Tang G M, Li M G, et al. 21-element infrared adaptive optics system at 2.16-m telescope[J]. Proceedings of SPIE, 1999, 3762: 142–149. doi: 10.1117/12.363569

    CrossRef Google Scholar

    [20] 魏凯, 张学军, 鲜浩, 等. 1.8 m望远镜127单元自适应光学系统首次观测结果(英文)[J].中国光学期刊, 2010, 8(11): 1019–1021.

    Google Scholar

    Wei K, Zhang X J, Xian H, et al. First light on the 127-element adaptive optical system for 1.8-m telescope[J]. Chinese Optics Letters, 2010, 8(11): 1019–1021.

    Google Scholar

    [21] Ling N, Zhang Y D, Rao X J, et al. Small table-top adaptive optical systems for human retinal imaging[J]. Proceedings of SPIE, 2002, 4825: 99–108. doi: 10.1117/12.451982

    CrossRef Google Scholar

    [22] 张雨东, 姜文汉, 史国华, 等.自适应光学的眼科学应用[J].中国科学G辑:物理学力学天文学, 2007, 37(S1): 68–74.

    Google Scholar

    Zhang Y D, Jiang W H, Shi G H, et al. Application of adaptive optics in ophthalmology[J]. Science in China: Series G: Physics, Mechanics & Astronomy, 2007, 37(S1): 68–74.

    Google Scholar

    [23] Chen M, Liu C, Rui D M, et al. Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle[J]. Optics Express, 2018, 26(4): 4230–4242. doi: 10.1364/OE.26.004230

    CrossRef Google Scholar

    [24] Chen M, Liu C, Rui D M, et al. Experimental results of atmospheric coherent optical communications with adaptive optics[J]. Optics Communications, 2019, 434: 91–96. doi: 10.1016/j.optcom.2018.10.013

    CrossRef Google Scholar

    [25] Rao C H, Jiang W H, Fang C, et al. A tilt-correction adaptive optical system for the solar telescope of Nanjing University[J]. Chinese Journal of Astronomy and Astrophysics, 2003, 3(6): 576–586. doi: 10.1088/1009-9271/3/6/576

    CrossRef Google Scholar

    [26] Rao C H, Zhu L, Rao X J, et al. 37-element solar adaptive optics for 26-cm solar fine structure telescope at Yunnan Astronomical Observatory[J]. Chinese Optics Letters, 2010, 8(10): 966–968. doi: 10.3788/COL20100810.0966

    CrossRef Google Scholar

    [27] Rao C H, Zhu L, Rao X J, et al. Second generation solar adaptive optics for 1-m New Vacuum Solar Telescope at the Fuxian Solar Observatory[J]. Chinese Optics Letters, 2015, 13(12): 120101. doi: 10.3788/COL201513.120101

    CrossRef Google Scholar

    [28] Rao C H, Gu N T, Rao X J, et al. First light of the 1.8-m solar telescope–CLST[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(10): 109631.

    Google Scholar

    [29] 杨泽平, 李恩德, 张小军, 等. "神光-Ⅲ"主机装置的自适应光学波前校正系统[J].光电工程, 2018, 45(3): 180049. doi: 10.12086/oee.2018.180049

    CrossRef Google Scholar

    Yang Z P, Li E D, Zhang X J, et al. Adaptive optics correction systems on Shen Guang Ⅲ facility[J]. Opto-Electronic Engineering, 2018, 45(3): 180049. doi: 10.12086/oee.2018.180049

    CrossRef Google Scholar

    [30] Zacharias R A, Beer N R, Bliss E S, et al. Alignment and wavefront control systems of the National Ignition Facility[J]. Optical Engineering, 2004, 43(12): 2873–2884. doi: 10.1117/1.1815331

    CrossRef Google Scholar

    [31] Ebrardt J, Chaput J M. LMJ project status[J]. Journal of Physics: Conference Series, 2008, 112(3): 032005. doi: 10.1088/1742-6596/112/3/032005

    CrossRef Google Scholar

    [32] 凌宁, 官春林, 王岚, 等. 61单元分立式压电变形反射镜的研制[J].量子电子学报, 1998, 10(4): 200–205.

    Google Scholar

    Ling N, Guan C L, Wang L, et al. The development of 61-element discrete piezoelectric deformable mirror[J]. Chinese Journal of Quantum Electronics, 1998, 10(4): 200–205.

    Google Scholar

    [33] 饶长辉, 朱磊, 张兰强, 等.太阳自适应光学技术进展[J].光电工程, 2018, 45(3): 170733. doi: 10.12086/oee.2018.170733

    CrossRef Google Scholar

    Rao C H, Zhu L, Zhang L Q, et al. Development of solar adaptive optics[J]. Opto-Electronic Engineering, 2018, 45(3): 170733. doi: 10.12086/oee.2018.170733

    CrossRef Google Scholar

    [34] 芮道满, 刘超, 陈莫, 等.自适应光学技术在星地激光通信地面站上的应用[J].光电工程, 2018, 45(3): 170647. doi: 10.12086/oee.2018.170647

    CrossRef Google Scholar

    Rui D M, Liu C, Chen M, et al. Application of adaptive optics on the satellite laser communication ground station[J]. Opto-Electronic Engineering, 2018, 45(3): 170647. doi: 10.12086/oee.2018.170647

    CrossRef Google Scholar

    [35] Liang J Z, Williams D R, Miller D T. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. Journal of the Optical Society of America A, 1997, 14(11): 2884–2892. doi: 10.1364/JOSAA.14.002884

    CrossRef Google Scholar

    [36] 宁禹, 余浩, 周虹, 等. 20单元双压电片变形镜对Zernike像差空间拟合能力的实验研究[J].光学学报, 2009, 29(7): 1756–1760.

    Google Scholar

    Ning Y, Yu H, Zhou H, et al. Experimental research on spatial fitting capability to Zernike aberrations of 20-element bimorph deformable mirror[J]. Acta Optica Sinica, 2009, 29(7): 1756–1760.

    Google Scholar

    [37] 周虹, 宁禹, 官春林, 等.双压电片变形反射镜样镜的设计与研制[J].光学学报, 2009, 29(6): 1437–1442.

    Google Scholar

    Zhou H, Ning Y, Guan C L, et al. Design and fabrication of prototype for bimorph deformable mirror[J]. Acta Optica Sinica, 2009, 29(6): 1437–1442.

    Google Scholar

    [38] 宁禹, 周虹, 官春林, 等. 20单元双压电片变形反射镜的影响函数有限元分析和实验测量[J].光学学报, 2008, 318(9): 1638–1642.

    Google Scholar

    Ning Y, Zhou H, Guan C L, et al. Finite element analysis and measurement of a 20-element bimorph deformable mirror[J]. Acta Optica Sinica, 2008, 318(9): 1638–1642.

    Google Scholar

    [39] Zhao L N, Dai Y, Xiao F, et al. Adaptive optics vision simulator based on 35 element bimorph deformable mirror[J]. Proceedings of SPIE, 2014, 9282: 928237.

    Google Scholar

    [40] Brusa G, Del Vecchio C. Design of an adaptive secondary mirror: a global approach[J]. Applied Optics, 1998, 37(21): 4656–4662. doi: 10.1364/AO.37.004656

    CrossRef Google Scholar

    [41] Riccardi A, Brusa G, Salinari P, et al. Adaptive secondary mirrors for the Large Binocular Telescope[J]. Proceedings of SPIE, 2003, 5169: 721–732.

    Google Scholar

    [42] 樊新龙, 官春林, 饶长辉. 1.8 m望远镜变形次镜波前拟合能力分析[J].光学学报, 2011, 31(8): 0822002.

    Google Scholar

    Fan X L, Guan C L, Rao C H. Wave-front fitting capability analysis of 1.8 m telescope's adaptive secondary mirror[J]. Acta Optica Sinica, 2011, 31(8): 0822002.

    Google Scholar

    [43] Guo Y M, Zhang A, Fan X L, et al. First light of the deformable secondary mirror-based adaptive optics system on 1.8m telescope[J]. Proceedings of SPIE, 2016, 9909: 99091D.

    Google Scholar

  • Overview: Deformable mirror is a particular optical device which is different from general optical mirror which requires high-quality and stable surface shape, it is precisely to compensate for other aberrations in the optical system by dynamically changing its surface shape. According to the requirements of the adaptive optics system, the surface shape of the deformable mirror needs to achieve precise with nanometer-level resolution and controllable dynamic changes with millisecond-level response speed, which is very technically difficult. There are many adaptive optics research teams, but relatively few of them have the ability of manufacturing practical deformable mirrors, mainly in the United States, Europe, and Russia. The Institute of Optics and Electronics, Chinese Academy of Sciences (IOE) in China is the earliest team engaged in the research of engineered adaptive optics technology, and has become the world's largest adaptive optics research team. In terms of deformable mirror technology, IOE has carried out synchronization technology research since the beginning of adaptive optics technology research in 1979. It has been more than 40 years and has achieved many remarkable results. The deformable mirror developed by IOE covers many types of structures, with diameters ranging from several millimeters to hundreds of millimeters, and the number of actuator ranges a few to thousands. They are widely used in Chinese inertial confinement fusion system, photoelectric imaging telescope system, and human eye retinal imaging systems, satellite-to-space laser communication system, etc.

    This review firstly introduces the historical background of the research on adaptive optics, especially deformable mirror technology by the Institute of Optics and Electronics, Chinese Academy of Sciences, and briefly describes the early development of our deformable mirror technology, including the first deformable mirror and the first set of adaptive optics system. Then it introduces the application of the deformable mirror developed by IOE in the Chinese inertial confinement fusion system, especially the development of the large-diameter detachable deformable mirror used in the 'Shen Guang Ⅲ' facility in recent years. It also introduces the typical multi-element deformable mirror technology and application results in the field of astronomical optical observation. Two different technological routes have been formed in the development of thousand-elements deformable mirrors, which fully guarantees the development needs of China's future large-aperture telescopes. Afterwards, the development and research status of compact deformable mirrors used in biomedicine and other fields are introduced, and finally, the research situation of new directions of deformable mirror technology of our institute was introduced.

  • 加载中
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Figures(17)

Tables(1)

Article Metrics

Article views(9188) PDF downloads(1934) Cited by(0)

Access History
Article Contents

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint