中国科学院光电技术研究所的变形反射镜研究进展

官春林,张小军,邓建明,等. 中国科学院光电技术研究所的变形反射镜研究进展[J]. 光电工程,2020,47(10):200337. doi: 10.12086/oee.2020.200337
引用本文: 官春林,张小军,邓建明,等. 中国科学院光电技术研究所的变形反射镜研究进展[J]. 光电工程,2020,47(10):200337. doi: 10.12086/oee.2020.200337
Guan C L, Zhang X J, Deng J M, et al. Deformable mirror technologies at Institute of Optics and Electronics, Chinese Academy of Sciences[J]. Opto-Electron Eng, 2020, 47(10): 200337. doi: 10.12086/oee.2020.200337
Citation: Guan C L, Zhang X J, Deng J M, et al. Deformable mirror technologies at Institute of Optics and Electronics, Chinese Academy of Sciences[J]. Opto-Electron Eng, 2020, 47(10): 200337. doi: 10.12086/oee.2020.200337

中国科学院光电技术研究所的变形反射镜研究进展

详细信息
    作者简介:
    通讯作者: 周虹(1983-),男,博士,副研究员,主要从事变形反射镜技术的研究。E-mail:zhouhong@ioe.ac.cn
  • 中图分类号: O43; TP273

Deformable mirror technologies at Institute of Optics and Electronics, Chinese Academy of Sciences

More Information
  • 变形反射镜是自适应光学系统的核心部件,也是开展自适应光学技术研究的首要研究对象。本文首先介绍了中国科学院光电技术研究所从事自适应光学特别是变形反射镜技术研究的历史背景,简述了光电所变形反射镜技术早期的发展脉络。然后介绍了光电所研制的变形反射镜在我国历代惯性约束聚变系统中的应用情况,也介绍了在天文光学观测领域典型的多单元变形镜技术及应用成果,随后还介绍了应用于生物医学等领域的紧凑型变形反射镜的发展情况和研究现状。最后介绍了光电所在变形反射镜技术新方向的研究情况。

  • Overview: Deformable mirror is a particular optical device which is different from general optical mirror which requires high-quality and stable surface shape, it is precisely to compensate for other aberrations in the optical system by dynamically changing its surface shape. According to the requirements of the adaptive optics system, the surface shape of the deformable mirror needs to achieve precise with nanometer-level resolution and controllable dynamic changes with millisecond-level response speed, which is very technically difficult. There are many adaptive optics research teams, but relatively few of them have the ability of manufacturing practical deformable mirrors, mainly in the United States, Europe, and Russia. The Institute of Optics and Electronics, Chinese Academy of Sciences (IOE) in China is the earliest team engaged in the research of engineered adaptive optics technology, and has become the world's largest adaptive optics research team. In terms of deformable mirror technology, IOE has carried out synchronization technology research since the beginning of adaptive optics technology research in 1979. It has been more than 40 years and has achieved many remarkable results. The deformable mirror developed by IOE covers many types of structures, with diameters ranging from several millimeters to hundreds of millimeters, and the number of actuator ranges a few to thousands. They are widely used in Chinese inertial confinement fusion system, photoelectric imaging telescope system, and human eye retinal imaging systems, satellite-to-space laser communication system, etc.

    This review firstly introduces the historical background of the research on adaptive optics, especially deformable mirror technology by the Institute of Optics and Electronics, Chinese Academy of Sciences, and briefly describes the early development of our deformable mirror technology, including the first deformable mirror and the first set of adaptive optics system. Then it introduces the application of the deformable mirror developed by IOE in the Chinese inertial confinement fusion system, especially the development of the large-diameter detachable deformable mirror used in the 'Shen Guang Ⅲ' facility in recent years. It also introduces the typical multi-element deformable mirror technology and application results in the field of astronomical optical observation. Two different technological routes have been formed in the development of thousand-elements deformable mirrors, which fully guarantees the development needs of China's future large-aperture telescopes. Afterwards, the development and research status of compact deformable mirrors used in biomedicine and other fields are introduced, and finally, the research situation of new directions of deformable mirror technology of our institute was introduced.

  • 加载中
  • 图 1  我国第一块变形镜实物图

    Figure 1.  The first deformable mirror of China

    图 2  用于“神光Ⅰ”装置的19单元变形镜

    Figure 2.  19-element deformable mirror for SG-Ⅰ facility

    图 3  部分原型装置变形镜实物图

    Figure 3.  Some deformable mirrors for the prototype facility

    图 4  17单元可拆卸大口径变形镜试验样镜

    Figure 4.  17-element DM prototype with replaceable actuators

    图 5  部分大口径可拆卸变形镜实物

    Figure 5.  Some of the large aperture DMs with replaceable actuators

    图 6  大口径可拆卸变形镜应用场景

    Figure 6.  Large aperture DMs with replaceable actuators in application site

    图 7  61单元变形镜(a)及127单元变形镜(b)

    Figure 7.  61-element DM (a) and 127-element DM (b)

    图 8  测试中的913单元变形镜(a)及其自校正面形(b)

    Figure 8.  913-element DM being tested (a) and its flattened surface map (b)

    图 9  913单元变形镜产生的典型面形

    Figure 9.  Typic surface maps of 913-element DM

    图 10  拟合Zernike像差的干涉条纹图

    Figure 10.  Interference fringes of Zernike aberration produced by 913-element DM

    图 11  用于激光通信的137单元高密度变形镜[34]

    Figure 11.  137-element high density DM for laser communication system[34]

    图 12  1085单元高密度变形镜实物(a)及检测结果(b)

    Figure 12.  1085-element high density DM (a) and its flattened surface map (b)

    图 13  早期人眼视网膜成像系统使用的19单元、37单元变形镜[21]

    Figure 13.  DMs used in early human retinal imaging systems[21]

    图 14  人眼视网膜成像系统使用的9单元、35单元双压电片变形镜

    Figure 14.  Bimorph DMs used in human retinal imaging systems

    图 15  73单元变形次镜

    Figure 15.  73-element secondary DM

    图 16  变形次镜的原始面形(a)及自校正后的面形(b)

    Figure 16.  The initial (a) and flattened (b) surface maps of 73-element SDM

    图 17  轻质空间能动镜样镜(a)及其自校正面形(b)

    Figure 17.  Space-based light-weight adaptive primary mirror prototype (a) and its flattened surface map (b)

    表 1  大口径变形镜技术指标对比

    Table 1.  Specification of different large aperture DMs

    LLNL实验室NIF 1代 LLNL实验室NIF 2代 光电所
    单元数 39 39 39、45、77
    通光口径/mm 400×400 365×365 380×380,368×330,453×400
    初始面形RMS/μm —— —— <0.1
    闭环校正面形RMS/μm 0.031 0.031 <0.027
    驱动器行程/μm 4 4 >6
    可校正Zernike模式项数 16 16 20
    损伤阈值/(J/cm2) —— —— ≥18
    反射率/% ≥99.5 ≥99.5 ≥99.5
    下载: 导出CSV
  • [1]

    Gaffard J P, Jagourel P, Gigan P. Adaptive optics: description of available components at Laserdot[J]. Proceedings of SPIE, 1994, 2201: 688–702. doi: 10.1117/12.176105

    [2]

    Wirth A, Cavaco J, Bruno T, et al. Deformable mirror technologies at AOA xinetics[J]. Proceedings of SPIE, 2013, 8780: 87800M. doi: 10.1117/12.2018031

    [3]

    Sinquin J C, Bastard A, Beaufort E, et al. Recent results and future DMs for astronomy and for space applications at CILAS[J]. Proceedings of SPIE, 2014, 9184: 91480G. http://spie.org/Publications/Proceedings/Paper/10.1117/12.2056287

    [4]

    Charton J, Bitenc U, Curis J F, et al. Recent improvements of high density magnetic deformable mirrors: faster, larger and stronger[J]. Proceedings of SPIE, 2014, 9148: 914825. http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=1896545

    [5]

    Fernández E, Artal P. Membrane deformable mirror for adaptive optics: performance limits in visual optics[J]. Optics Express, 2003, 11(9): 1056–1069. doi: 10.1364/OE.11.001056

    [6]

    Kudryashov A V, Kulakov V B, Kotsuba Y V, et al. Low-cost adaptive optical devices for multipurpose applications[J]. Proceedings of SPIE, 1999, 3688: 469–475. doi: 10.1117/12.337555

    [7]

    Hardy J W, Lefebvre J E, Koliopoulos C L. Real-time atmospheric compensation[J]. Journal of the Optical Society of America, 1977, 67(3): 360–369. doi: 10.1364/JOSA.67.000360

    [8]

    Hardy J W. Active optics: a new technology for the control of light[C]//Proceedings of the IEEE, 1978, 66: 651–697.

    [9]

    姜文汉.光电技术研究所的自适应光学技术[J].光电工程, 1995, 22(1): 1–13. http://www.cnki.com.cn/Article/CJFDTotal-GDGC501.000.htm

    Jiang W H. Adaptive optics techniques investigations in institute of optics and electronics[J]. Opto-Electronic Engineering, 1995, 22(1): 1–13. http://www.cnki.com.cn/Article/CJFDTotal-GDGC501.000.htm

    [10]

    凌宁, 张正荣.多元整体压电变形反射镜(二)—变形反射镜的工作寿命[J].光学工程, 1985(2): 22–28. http://www.cnki.com.cn/Article/CJFDTotal-GDGC198502003.htm

    Lin N, Zhang Z R. Multielement monolithic piezoelectric deformble mirror (Ⅱ)—working life of deformable mirror[J]. Optical Engineering, 1985(2): 22–28. http://www.cnki.com.cn/Article/CJFDTotal-GDGC198502003.htm

    [11]

    凌宁.多元整体压电变形反射镜(研究阶段进展报告)[J].光学工程, 1982(6): 44–52. http://www.cnki.com.cn/Article/CJFDTotal-GDGC198206004.htm

    [12]

    姜文汉.自适应光学发展综述[J].光电工程, 2018, 45(3): 170489. doi: 10.12086/oee.2018.170489

    Jiang W H. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 170489. doi: 10.12086/oee.2018.170489

    [13]

    Jiang W H, Huang S F, Ling N, et al. Hill-climbing wavefront correction system for large laser engineering[J]. Proceedings of SPIE, 1988, 965: 266–272. http://dx.doi.org/10.1117/12.948042

    [14]

    姜文汉, 李明全, 汤国茂, 等.星体目标自适应光学成象补偿[J].光电工程, 1995, 22(1): 23–30. http://www.cnki.com.cn/Article/CJFDTotal-GDGC501.002.htm

    Jiang W H, Li M Q, Tang G M, et al. The compensated imaging for stars by adaptive optics[J]. Opto-Electronic Engineering, 1995, 22(1): 23–30. http://www.cnki.com.cn/Article/CJFDTotal-GDGC501.002.htm

    [15]

    Jiang W H, Li M Q, Tang G M, et al. Adaptive optics image compensation experiment for star objects[J]. Proceedings of SPIE, 1993, 1920: 381–391. doi: 10.1117/12.152688

    [16]

    姜文汉, 王春红, 凌宁, 等. 61单元自适应光学系统[J].量子电子学报, 1998, 15(2): 193–199. http://qikan.cqvip.com/Qikan/Article/Detail?id=2942837

    Jiang W H, Wang C H, Ling N, et al. 61 element adaptive optical system[J]. Chinese Journal of Quantum Electronics, 1998, 15(2): 193–199. http://qikan.cqvip.com/Qikan/Article/Detail?id=2942837

    [17]

    姜文汉, 杨泽平, 官春林, 等.自适应光学技术在惯性约束聚变领域应用的新进展[J].中国激光, 2009, 36(7): 1625–1634. http://www.cqvip.com/Main/Detail.aspx?id=31027509

    Jiang W H, Yang Z P, Guan C L, et al. New progress on adaptive optics in inertial confinement fusion facility[J]. Chinese Journal of Lasers, 2009, 36(7): 1625–1634. http://www.cqvip.com/Main/Detail.aspx?id=31027509

    [18]

    Ao M W, Yang P, Yang Z O, et al. A method of aberration measurement and correction for entire beam path of ICF beam path[J]. Proceedings of SPIE, 2007, 6823: 68230I. doi: 10.1117/12.755454

    [19]

    Jiang W H, Tang G M, Li M G, et al. 21-element infrared adaptive optics system at 2.16-m telescope[J]. Proceedings of SPIE, 1999, 3762: 142–149. doi: 10.1117/12.363569

    [20]

    魏凯, 张学军, 鲜浩, 等. 1.8 m望远镜127单元自适应光学系统首次观测结果(英文)[J].中国光学期刊, 2010, 8(11): 1019–1021. http://dx.doi.org/10.3788/col20100811.1019

    Wei K, Zhang X J, Xian H, et al. First light on the 127-element adaptive optical system for 1.8-m telescope[J]. Chinese Optics Letters, 2010, 8(11): 1019–1021. http://dx.doi.org/10.3788/col20100811.1019

    [21]

    Ling N, Zhang Y D, Rao X J, et al. Small table-top adaptive optical systems for human retinal imaging[J]. Proceedings of SPIE, 2002, 4825: 99–108. doi: 10.1117/12.451982

    [22]

    张雨东, 姜文汉, 史国华, 等.自适应光学的眼科学应用[J].中国科学G辑:物理学力学天文学, 2007, 37(S1): 68–74. http://www.cnki.com.cn/Article/CJFDTotal-JGXK2007S1007.htm

    Zhang Y D, Jiang W H, Shi G H, et al. Application of adaptive optics in ophthalmology[J]. Science in China: Series G: Physics, Mechanics & Astronomy, 2007, 37(S1): 68–74. http://www.cnki.com.cn/Article/CJFDTotal-JGXK2007S1007.htm

    [23]

    Chen M, Liu C, Rui D M, et al. Performance verification of adaptive optics for satellite-to-ground coherent optical communications at large zenith angle[J]. Optics Express, 2018, 26(4): 4230–4242. doi: 10.1364/OE.26.004230

    [24]

    Chen M, Liu C, Rui D M, et al. Experimental results of atmospheric coherent optical communications with adaptive optics[J]. Optics Communications, 2019, 434: 91–96. doi: 10.1016/j.optcom.2018.10.013

    [25]

    Rao C H, Jiang W H, Fang C, et al. A tilt-correction adaptive optical system for the solar telescope of Nanjing University[J]. Chinese Journal of Astronomy and Astrophysics, 2003, 3(6): 576–586. doi: 10.1088/1009-9271/3/6/576

    [26]

    Rao C H, Zhu L, Rao X J, et al. 37-element solar adaptive optics for 26-cm solar fine structure telescope at Yunnan Astronomical Observatory[J]. Chinese Optics Letters, 2010, 8(10): 966–968. doi: 10.3788/COL20100810.0966

    [27]

    Rao C H, Zhu L, Rao X J, et al. Second generation solar adaptive optics for 1-m New Vacuum Solar Telescope at the Fuxian Solar Observatory[J]. Chinese Optics Letters, 2015, 13(12): 120101. doi: 10.3788/COL201513.120101

    [28]

    Rao C H, Gu N T, Rao X J, et al. First light of the 1.8-m solar telescope–CLST[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(10): 109631. http://link.springer.com/10.1007/s11433-019-1557-3

    [29]

    杨泽平, 李恩德, 张小军, 等. "神光-Ⅲ"主机装置的自适应光学波前校正系统[J].光电工程, 2018, 45(3): 180049. doi: 10.12086/oee.2018.180049

    Yang Z P, Li E D, Zhang X J, et al. Adaptive optics correction systems on Shen Guang Ⅲ facility[J]. Opto-Electronic Engineering, 2018, 45(3): 180049. doi: 10.12086/oee.2018.180049

    [30]

    Zacharias R A, Beer N R, Bliss E S, et al. Alignment and wavefront control systems of the National Ignition Facility[J]. Optical Engineering, 2004, 43(12): 2873–2884. doi: 10.1117/1.1815331

    [31]

    Ebrardt J, Chaput J M. LMJ project status[J]. Journal of Physics: Conference Series, 2008, 112(3): 032005. doi: 10.1088/1742-6596/112/3/032005

    [32]

    凌宁, 官春林, 王岚, 等. 61单元分立式压电变形反射镜的研制[J].量子电子学报, 1998, 10(4): 200–205. http://qikan.cqvip.com/Qikan/Article/Detail?id=2942838

    Ling N, Guan C L, Wang L, et al. The development of 61-element discrete piezoelectric deformable mirror[J]. Chinese Journal of Quantum Electronics, 1998, 10(4): 200–205. http://qikan.cqvip.com/Qikan/Article/Detail?id=2942838

    [33]

    饶长辉, 朱磊, 张兰强, 等.太阳自适应光学技术进展[J].光电工程, 2018, 45(3): 170733. doi: 10.12086/oee.2018.170733

    Rao C H, Zhu L, Zhang L Q, et al. Development of solar adaptive optics[J]. Opto-Electronic Engineering, 2018, 45(3): 170733. doi: 10.12086/oee.2018.170733

    [34]

    芮道满, 刘超, 陈莫, 等.自适应光学技术在星地激光通信地面站上的应用[J].光电工程, 2018, 45(3): 170647. doi: 10.12086/oee.2018.170647

    Rui D M, Liu C, Chen M, et al. Application of adaptive optics on the satellite laser communication ground station[J]. Opto-Electronic Engineering, 2018, 45(3): 170647. doi: 10.12086/oee.2018.170647

    [35]

    Liang J Z, Williams D R, Miller D T. Supernormal vision and high-resolution retinal imaging through adaptive optics[J]. Journal of the Optical Society of America A, 1997, 14(11): 2884–2892. doi: 10.1364/JOSAA.14.002884

    [36]

    宁禹, 余浩, 周虹, 等. 20单元双压电片变形镜对Zernike像差空间拟合能力的实验研究[J].光学学报, 2009, 29(7): 1756–1760. http://www.cnki.com.cn/Article/CJFDTotal-GXXB200907004.htm

    Ning Y, Yu H, Zhou H, et al. Experimental research on spatial fitting capability to Zernike aberrations of 20-element bimorph deformable mirror[J]. Acta Optica Sinica, 2009, 29(7): 1756–1760. http://www.cnki.com.cn/Article/CJFDTotal-GXXB200907004.htm

    [37]

    周虹, 宁禹, 官春林, 等.双压电片变形反射镜样镜的设计与研制[J].光学学报, 2009, 29(6): 1437–1442. http://www.cnki.com.cn/Article/CJFDTotal-GXXB200906003.htm

    Zhou H, Ning Y, Guan C L, et al. Design and fabrication of prototype for bimorph deformable mirror[J]. Acta Optica Sinica, 2009, 29(6): 1437–1442. http://www.cnki.com.cn/Article/CJFDTotal-GXXB200906003.htm

    [38]

    宁禹, 周虹, 官春林, 等. 20单元双压电片变形反射镜的影响函数有限元分析和实验测量[J].光学学报, 2008, 318(9): 1638–1642. http://www.cnki.com.cn/Article/CJFDTotal-GXXB200809004.htm

    Ning Y, Zhou H, Guan C L, et al. Finite element analysis and measurement of a 20-element bimorph deformable mirror[J]. Acta Optica Sinica, 2008, 318(9): 1638–1642. http://www.cnki.com.cn/Article/CJFDTotal-GXXB200809004.htm

    [39]

    Zhao L N, Dai Y, Xiao F, et al. Adaptive optics vision simulator based on 35 element bimorph deformable mirror[J]. Proceedings of SPIE, 2014, 9282: 928237. http://spie.org/Publications/Proceedings/Paper/10.1117/12.2069778

    [40]

    Brusa G, Del Vecchio C. Design of an adaptive secondary mirror: a global approach[J]. Applied Optics, 1998, 37(21): 4656–4662. doi: 10.1364/AO.37.004656

    [41]

    Riccardi A, Brusa G, Salinari P, et al. Adaptive secondary mirrors for the Large Binocular Telescope[J]. Proceedings of SPIE, 2003, 5169: 721–732. https://www.spie.org/Publications/Proceedings/Paper/10.1117/12.511374?SSO=1

    [42]

    樊新龙, 官春林, 饶长辉. 1.8 m望远镜变形次镜波前拟合能力分析[J].光学学报, 2011, 31(8): 0822002. http://www.cnki.com.cn/Article/CJFDTotal-GXXB201108044.htm

    Fan X L, Guan C L, Rao C H. Wave-front fitting capability analysis of 1.8 m telescope's adaptive secondary mirror[J]. Acta Optica Sinica, 2011, 31(8): 0822002. http://www.cnki.com.cn/Article/CJFDTotal-GXXB201108044.htm

    [43]

    Guo Y M, Zhang A, Fan X L, et al. First light of the deformable secondary mirror-based adaptive optics system on 1.8m telescope[J]. Proceedings of SPIE, 2016, 9909: 99091D. http://spie.org/Publications/Proceedings/Paper/10.1117/12.2231842

  • 加载中

(17)

(1)

计量
  • 文章访问数:  9613
  • PDF下载数:  1980
  • 施引文献:  0
出版历程
收稿日期:  2020-08-28
修回日期:  2020-09-26
刊出日期:  2020-10-15

目录

/

返回文章
返回