一种应用于光纤陀螺寻北的温度漂移补偿方法

骆金辉,周一览,刘承,等. 一种应用于光纤陀螺寻北的温度漂移补偿方法[J]. 光电工程,2020,47(11):190681. doi: 10.12086/oee.2020.190681
引用本文: 骆金辉,周一览,刘承,等. 一种应用于光纤陀螺寻北的温度漂移补偿方法[J]. 光电工程,2020,47(11):190681. doi: 10.12086/oee.2020.190681
Luo J H, Zhou Y L, Liu C, et al. A temperature drift compensation method applied to fiber optic gyroscope north-seeking[J]. Opto-Electron Eng, 2020, 47(11): 190681. doi: 10.12086/oee.2020.190681
Citation: Luo J H, Zhou Y L, Liu C, et al. A temperature drift compensation method applied to fiber optic gyroscope north-seeking[J]. Opto-Electron Eng, 2020, 47(11): 190681. doi: 10.12086/oee.2020.190681

一种应用于光纤陀螺寻北的温度漂移补偿方法

  • 基金项目:
    国家自然科学基金资助项目(61203190)
详细信息
    作者简介:
    通讯作者: 骆金辉, E-mail: 21730064@zju.edu.cn
  • 中图分类号: V241.5

A temperature drift compensation method applied to fiber optic gyroscope north-seeking

  • Fund Project: Supported by National Natural Science Foundation of China (61203190)
More Information
  • 光纤陀螺寻北启动误差是启动过程温度剧烈变化导致的光纤陀螺零偏漂移产生的误差,表现为冷启动时寻北误差较稳定段时明显增大,事实上延长了有效寻北时间。通过对光纤陀螺温度漂移影响因素的分析,利用经验模态分解、ARMA建模与Kalman滤波建立多参量线性模型,实现了一种应用于光纤陀螺寻北的温度漂移补偿方法,实验结果表明,该方法可以将寻北启动误差降低近80%,使得冷启动时寻北精度与稳定段相当并缩短了有效寻北时间。

  • Overview: The north-seeking orientation technology has wide range of applications in many fields. In the military domain, missiles, rockets, artillery, etc. cannot be launched without direction datum. Aerospace, tanks, ships, etc. cannot work without direction datum. In the civilian domain, mineral exploration, mining, geotechnical engineering, and civil engineering construction also require direction datum. Therefore, the research on north-seeking orientation technology is of great significance for realizing national defense modernization and promoting national economic development.

    Fiber optical gyroscope (FOG) is an all-solid-state gyroscope based on Sagnac effect. It has the advantages of high impact resistance, high sensitivity, long life, low power consumption, and reliable integration. It is especially suitable for north-seeking orientation system. However, since the main components of FOG are sensitive to temperature, when the temperature changes, non-reciprocal phase errors will occur in the output signal of FOG, resulting in instability of the zero drift of FOG, and ultimately affecting FOG's accuracy under different temperature conditions. Therefore, the change of temperature during the startup of FOG leads to the phenomenon that the output data of FOG has a large temperature drift after power-on, and then gradually becomes stable. This startup characteristic causes FOG north-seeking startup drift, and north-seeking startup error during the cold start, which is manifested by a significant increase in the north-seeking error during the cold start and actually prolongs the effective north-seeking time.

    The method for suppressing the temperature drift of the FOG generally adopts methods of improving the structure and components of the fiber gyro, improving the fiber winding technology, and controlling the temperature of FOG. But suppressing the temperature drift from the mechanism, especially for the medium and low precision FOG with small volume is very difficult. However, the temperature drift modeling compensation is a relatively simple and quick solution, and can basically meet the work requirements. Through the analysis of the factors affecting the temperature drift of FOG, the multi-parameter linear model was established by empirical mode decomposition (EMD), autoregressive-moving average (ARMA) modeling, and Kalman filtering to realize a temperature drift compensation method applied to FOG north-seeking. The experimental results show that the method can reduce the north-seeking startup error by nearly 80%, so that the startup north-seeking precision is equivalent to the stable phase and the effective north-seeking time is shortened.

  • 加载中
  • 图 1  光纤陀螺温度漂移模型建立流程图

    Figure 1.  Flow chart of fiber optic gyro temperature drift compensation model

    图 2  光纤陀螺静态实验结果

    Figure 2.  Fiber optic gyro static experiment results

    图 3  光纤陀螺温度补偿效果

    Figure 3.  Fiber optic gyro temperature compensation effect

    表 1  组断实验结果

    Table 1.  Result of experiments with powering off between each set

    寻北精度 原始数据 补偿后数据
    含首次实验/(°) 0.590 0.323
    去首次实验/(°) 0.362 0.302
    下载: 导出CSV

    表 2  次断实验结果

    Table 2.  Result of experiments with powering off between each experiment

    原始数据 补偿后数据
    寻北精度/(°) 1.35 0.288
    下载: 导出CSV
  • [1]

    韩冰, 林玉荣, 邓正隆.光纤陀螺温度漂移误差的建模与补偿综述[J].中国惯性技术学报, 2009, 17(2): 218-224. http://d.wanfangdata.com.cn/Periodical/zggxjsxb200902022

    Han B, Lin Y R, Deng Z L. Overview on modeling and compensation of fog temperature drift[J]. Journal of Chinese Inertial Technology, 2009, 17(2): 218-224. http://d.wanfangdata.com.cn/Periodical/zggxjsxb200902022

    [2]

    戴邵武, 郑百东, 李文国, 等.基于多参量模型的光纤陀螺温度误差补偿[J].导航定位与授时, 2019, 6(4): 78-82. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DWSS201904012

    Dai S W, Zheng B D, Li W G, et al. Temperature error compensation of fiber optic gyroscope based on multi-parameter model[J]. Navigation Positioning and Timing, 2019, 6(4): 78-82. http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CJFD&filename=DWSS201904012

    [3]

    李家垒, 许化龙, 何婧.基于小波网络的光纤陀螺启动漂移温度补偿[J].光学学报, 2011, 31(5): 0506005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201105010

    Li J L, Xu H L, He J. Temperature compensation of start-up drift for fiber optic gyroscope based on wavelet network[J]. Acta Optica Sinica, 2011, 31(5): 0506005. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=gxxb201105010

    [4]

    李光耀, 侯宏录, 杜鹃, 等.采用小波降噪和神经网络的FOG温度漂移补偿方法[J].光电工程, 2019, 46(9): 180636. doi: 10.12086/oee.2019.180636

    Li G Y, Hou H L, Du J, et al. FOG temperature drift compensation method based on wavelet denoising and neural network[J]. Opto-Electronic Engineering, 2019, 46(9): 180636. doi: 10.12086/oee.2019.180636

    [5]

    钱峰, 田蔚风, 杨艳娟, 等.基于受控马氏链的干涉型光纤陀螺温度漂移模型[J].光电子·激光, 2003, 14(7): 705-708. http://www.cnki.com.cn/Article/CJFDTotal-GDZJ200307011.htm

    Qian F, Tian W F, Yang Y J, et al. A model on temperature drift of interference fiber optical gyros based on controlled Markov chain[J]. Journal of Optoelectronics·Laser, 2003, 14(7): 705-708. http://www.cnki.com.cn/Article/CJFDTotal-GDZJ200307011.htm

    [6]

    王威, 陈熙源.一种基于多尺度和改进支持向量机的光纤陀螺温度漂移建模与补偿方法[J].中国惯性技术学报, 2016, 24(6): 793-797. http://d.wanfangdata.com.cn/Periodical/zggxjsxb201606017

    Wang W, Chen X Y. Modeling and compensation method of FOG temperature drift based on multi-scale and improved support vector machine[J]. Journal of Chinese Inertial Technology, 2016, 24(6): 793-797. http://d.wanfangdata.com.cn/Periodical/zggxjsxb201606017

    [7]

    刘文涛, 刘洁瑜, 沈强.光纤陀螺温度漂移的多尺度建模研究[J].压电与声光, 2019, 41(3): 431-435. http://www.cnki.com.cn/Article/CJFDTotal-YDSG201903025.htm

    Liu W T, Liu J Y, Shen Q. Research on multi-scale modeling of temperature drift in fogs[J]. Piezoelectrics & Acoustooptics, 2019, 41(3): 431-435. http://www.cnki.com.cn/Article/CJFDTotal-YDSG201903025.htm

    [8]

    陈一平, 梁璀, 张登伟, 等.光纤陀螺磁温耦合效应[J].光子学报, 2018, 47(5): 0506005. http://www.cqvip.com/QK/93651A/201805/71908866504849564853485050.html

    Chen Y P, Liang C, Zhang D W, et al. Magnetic-temperature coupling effect of a fiber optic gyroscope[J]. Acta Photonica Sinica, 2018, 47(5): 0506005. http://www.cqvip.com/QK/93651A/201805/71908866504849564853485050.html

    [9]

    Shupe D M. Thermally induced nonreciprocity in the fiber-optic interferometer[J]. Applied Optics, 1980, 19(5): 654-655. doi: 10.1364/AO.19.000654

    [10]

    金靖, 宋凝芳, 李立京.干涉型光纤陀螺温度漂移建模与实时补偿[J].航空学报, 2007, 28(6): 1449-1454. http://www.cqvip.com/Main/Detail.aspx?id=25994080

    Jin J, Song N F, Li L J. Temperature drift modeling and real-time compensation of interferometric fiber optic gyroscope[J]. Acta Aeronautica et Astronautica Sinica, 2007, 28(6): 1449-1454. http://www.cqvip.com/Main/Detail.aspx?id=25994080

    [11]

    IEEE. IEEE standard specification format guide and test procedure for single-axis interferometric fiber optic gyros: IEEE Std 952-1997[S]. Ne York: IEEE, 1998.

    [12]

    Huang N E, Shen Z, Long S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193

    [13]

    刘文涛, 刘洁瑜, 沈强.光纤陀螺随机误差的集成建模及滤波处理[J].光电工程, 2018, 45(10): 180082. doi: 10.12086/oee.2018.180082

    Liu W T, Liu J Y, Shen Q. Integrated modeling and filtering of fiber optic gyroscope's random errors[J]. Opto-Electronic Engineering, 2018, 45(10): 180082. doi: 10.12086/oee.2018.180082

    [14]

    Wu Z H, Huang N E. A study of the characteristics of white noise using the empirical mode decomposition method[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2004, 460(2046): 1597-1611. doi: 10.1098/rspa.2003.1221

    [15]

    朱奎宝, 张春熹, 张小跃.光纤陀螺随机漂移ARMA模型研究[J].宇航学报, 2006, 27(5): 1118-1121. http://d.wanfangdata.com.cn/Periodical/yhxb200605059

    Zhu K B, Zhang C X, Zhang X Y. Study on modeling and identification of random drift for fog[J]. Journal of Astronautics, 2006, 27(5): 1118-1121. http://d.wanfangdata.com.cn/Periodical/yhxb200605059

    [16]

    马知瑶, 周一览.光纤陀螺寻北启动误差抑制方法研究[J].传感器与微系统, 2018, 37(6): 33-35. http://d.old.wanfangdata.com.cn/Periodical_cgqjs201806010.aspx

    Ma Z Y, Zhou Y L. Research on suppression method of north-seeking startup error of fiber-optic gyroscope[J]. Transducer and Microsystem Technologies, 2018, 37(6): 33-35. http://d.old.wanfangdata.com.cn/Periodical_cgqjs201806010.aspx

  • 加载中

(3)

(2)

计量
  • 文章访问数:  6270
  • PDF下载数:  1034
  • 施引文献:  0
出版历程
收稿日期:  2019-11-10
修回日期:  2020-01-21
刊出日期:  2020-11-15

目录

/

返回文章
返回