基于粒子群优化的二阶拉曼光纤放大器研究

巩稼民,张晨,郝倩文,等. 基于粒子群优化的二阶拉曼光纤放大器研究[J]. 光电工程,2020,47(11):190747. doi: 10.12086/oee.2020.190747
引用本文: 巩稼民,张晨,郝倩文,等. 基于粒子群优化的二阶拉曼光纤放大器研究[J]. 光电工程,2020,47(11):190747. doi: 10.12086/oee.2020.190747
Gong J M, Zhang C, Hao Q W, et al. Research on second-order Raman fiber amplifier based on particle swarm optimization[J]. Opto-Electron Eng, 2020, 47(11): 190747. doi: 10.12086/oee.2020.190747
Citation: Gong J M, Zhang C, Hao Q W, et al. Research on second-order Raman fiber amplifier based on particle swarm optimization[J]. Opto-Electron Eng, 2020, 47(11): 190747. doi: 10.12086/oee.2020.190747

基于粒子群优化的二阶拉曼光纤放大器研究

  • 基金项目:
    国家自然科学基金资助项目(61775180);西安邮电大学研究生创新基金项目(CXJJLY2019052)
详细信息
    作者简介:
    通讯作者: 张晨(1996-),女,硕士研究生,主要从事光通信方向的研究。E-mail:973172298@qq.com
  • 中图分类号: TN722;TP18

Research on second-order Raman fiber amplifier based on particle swarm optimization

  • Fund Project: Supported by National Natural Science Foundation of China (61775180) and the Graduate Innovation Fund Project of Xi'an University of Posts and Telecommunications (CXJJLY2019052)
More Information
  • 为了进一步提升二阶拉曼光纤放大器(RFA)的性能指标,对二阶RFA的主要参数进行了分析。首先设计了一个可以通过光开关控制,在二阶和一阶RFA两种模式下切换的结构模型,通过模拟仿真证明了二阶RFA可以提高系统的增益,改善系统的噪声性能,然后针对二阶RFA的增益性能进行了优化,以降低平坦度为优化目标,使用粒子群算法优化泵浦光波长和功率的配置,再经过结构的改进,最终在100 nm带宽范围内实现了增益为24.50 dB,增益平坦度为0.98 dB的二阶RFA。这些结果为以后设计出性能更加完善的二阶RFA提供了参考。

  • Overview: With its own advantages, RFA has gradually occupied an increasingly important position in the optical fiber communication systems. The current research on RFA is still focused on traditional first-order RFA. During the continuous development of optical amplifier technology, the performance of other types of optical amplifiers has also in the gradual improvement. Facing such a competitive trend, people's eyes are gradually turning to higher-order Raman amplifiers. In the high-level, people first put research hotspots into the second-order RFA research and development, and experiments. How to increase the output bandwidth of RFA and reduce its gain flatness is an important problem to be solved by current amplifiers. In this paper, a second-order forward multi-pumped FRA is used, and pumps with different wavelengths have different gain peak amplification for different frequency signals, so as to achieve amplification of the entire band of signal light. First, it is proved through simulation that the second-order RFA can increase the system's gain and improve the noise performance of the system. Then, the second-order RFA's gain performance is optimized. The output gain and gain flatness are taken as the optimization goals within the 100 nm bandwidth. The particle swarm optimization algorithm is used to optimize the configuration of the wavelength and power of the pump light, so that the first- and second-order pump light interact to realize the multi-pump technology to reduce the flatness and improve the performance of the second-order RFA. In the analysis of the optimization results of the particle swarm optimization algorithm, a simpler and more efficient second-order RFA structure is given through the data summary and comparison, and the structure optimization of the second-order RFA is realized. In the optimized structure, the optimal configuration of the pump light wavelength and power of the second-order RFA is also given through continuous search and optimization of the algorithm. In addition, a single second-order pump and five first-order pumps used in the 100 nm bandwidth realized the second-order RFA with gain of 24.50 dB and gain flatness of 0.98 dB, which proved the effectiveness of the particle swarm optimization algorithm in optimizing the gain performance of the second-order RFA. Finally, the effect of the number of pump light on the performance of the second-order RFA is analyzed. It is concluded that the number of first-order pump light has a great effect on improving the flatness of the gain. These results provide a reference for the design of the second-order RFA with better performance in the future.

  • 加载中
  • 图 1  二阶前向RFA结构图

    Figure 1.  Structure of second-order forward RFA

    图 2  二阶/一阶RFA的结构图

    Figure 2.  Structure of second-order/first order RFA

    图 3  不同阶RFA的信噪比和噪声指数图。(a)信噪比;(b)噪声指数

    Figure 3.  SNR and NF of RFA of different orders. (a) SNR; (b) NF

    图 4  不同阶RFA的信号光功率随光纤长度的分布。(a)一阶RFA;(b)二阶RFA

    Figure 4.  Distribution of signal optical power of different order RFA with fiber length. (a) First-order RFA; (b) Second-order RFA

    图 5  不同阶RFA的增益曲线。(a)一阶RFA;(b)二阶RFA

    Figure 5.  Gain curves of RFA of different orders. (a) First-order RFA; (b) Second-order RFA

    图 6  不同阶RFA的泵浦光功率随光纤长度的分布。(a)一阶RFA;(b)二阶RFA

    Figure 6.  Distribution of pump optical power of different order RFA with fiber length. (a) First-order RFA; (b) Second-order RFA

    图 7  二阶RFA的增益

    Figure 7.  The gain of second-order RFA

    图 8  泵浦光功率随光纤长度的变化曲线

    Figure 8.  Curve of pump optical power with fiber length

    表 1  优化结果

    Table 1.  Optimization results

    No. Gain/dB ⊿/dB 2nd-order pumps 1st-order pumps
    λ/nm P/mW λ/nm P/mW
    A 24.56 1.20 1319/1323 952/866 1405/1418/1449/1490 320/222/31/98
    B 24.61 1.25 1311 1830 1408/1421/1476/1488 337/257/32/95
    C 24.50 0.98 1304 1821 1406/1419/1441/1465/1491 410/201/48/35/91
    D 24.75 2.73 1317 1849 1415/1452/1483 487/43/135
    下载: 导出CSV
  • [1]

    Kidorf H, Rottwitt K, Nissov M, et al. Pump interactions in a 100 nm bandwidth Raman amplifier[J]. IEEE Photonics Technology Letters, 1999, 11(5): 530-532. doi: 10.1109/68.759388

    [2]

    Gainov V, Gurkin N, Lukinih S, et al. Record 500 km unrepeatered 1 Tbit/s (10x100G) transmission over an ultra-low loss fiber[J]. Optics Express, 2014, 22(19): 22308-22313. doi: 10.1364/OE.22.022308

    [3]

    Zhu B Y, Borel P, Carlson K, et al. Unrepeatered Transmission of 6.3 Tb/s (63x128 Gb/s) Over 402-km Fiber Link[J]. IEEE Photonics Technology Letters, 2014, 26(17): 1711-1714. doi: 10.1109/LPT.2014.2331338

    [4]

    周文婷, 崔力民, 张玮, 等.超长距光传输系统中光放大器综合配置技术研究[J].电子器件, 2016, 39(6): 1360-1363. doi: 10.3969/j.issn.1005-9490.2016.06.016

    Zhou W T, Cui L M, Zhang W, et al. Study on integrated configuration of optical amplifiers in the ultra long haul optical transmission system[J]. Chinese Journal of Electron Devices, 2016, 39(6): 1360-1363. doi: 10.3969/j.issn.1005-9490.2016.06.016

    [5]

    方音佳, 赵蕊月.拉曼光纤放大器的发展现状[J].科技创新与应用, 2018(19): 76-77. http://www.cnki.com.cn/Article/CJFDTotal-CXYY201819032.htm

    Fang Y J, Zhao R Y. Development status of Raman fiber amplifier[J]. Technology Innovation and Application, 2018(19): 76-77. http://www.cnki.com.cn/Article/CJFDTotal-CXYY201819032.htm

    [6]

    臧可.高阶光纤拉曼放大器的特性研究[D].北京: 北京邮电大学, 2013.

    Zang K. Research on the characteristics of the Higher-order Raman fiber amplifier[D]. Beijing: Beijing University of Posts and Telecommunications, 2013.

    [7]

    黄金飞, 付成鹏, 余春平.二阶DRA泵浦方式对噪声性能的影响[J].光通信研究, 2016(5): 62-64. doi: 10.13756/j.gtxyj.2016.05.018

    Huang J F, Fu C P, Yu C P. The effect of second order DRA pumping way on the performance of the noise[J]. Study on Optical Communications, 2016(5): 62-64. doi: 10.13756/j.gtxyj.2016.05.018

    [8]

    Chen Y F. Improved energy detector for random signals in Gaussian noise[J]. IEEE Transactions on Wireless Communications, 2010, 9(2): 558-563. doi: 10.1109/TWC.2010.5403535

    [9]

    王丹燕, 姜海明, 谢康.双向多泵浦光纤拉曼放大器偏振相关增益研究[J].红外与激光工程, 2016, 45(2): 0222003. doi: 10.3788/IRLA201645.0222003

    Wang D Y, Jiang H M, Xie K. Study on polarization dependent gain of fiber Raman amplifiers with bidirectional pumps[J]. Infrared and Laser Engineering, 2016, 45(2): 0222003. doi: 10.3788/IRLA201645.0222003

    [10]

    Al-Asadi H A, Hambali N A M B A. Experimental evaluation and theoretical investigations of fiber Raman amplifiers and its gain optimization based on single forward pump[J]. Journal of Laser Applications, 2014, 26(4): 042002. doi: 10.2351/1.4889955

    [11]

    杨伟新, 张晓森.粒子群优化算法综述[J].甘肃科技, 2012, 28(5): 88-92, 73. doi: 10.3969/j.issn.1000-0952.2012.05.033

    Yang W X, Zhang X S. Overview of particle swarm optimization algorithms[J]. Gansu Science and Technology, 2012, 28(5): 88-92, 73. doi: 10.3969/j.issn.1000-0952.2012.05.033

    [12]

    徐鹤鸣.多目标粒子群优化算法的研究[D].上海: 上海交通大学, 2013.

    Xu H M. Research on multiobjective particle swarm optimization algorithms[D]. Shanghai: Shanghai Jiao Tong University, 2013.

    [13]

    冯金芝, 陈兴, 郑松林.一种改进的多目标粒子群优化算法及其应用[J].计算机应用研究, 2014, 31(3): 675-678, 683. doi: 10.3969/j.issn.1001-3695.2014.03.008

    Feng J Z, Chen X, Zheng S L. Improved MOPSO algorithm and its application[J]. Application Research of Computers, 2014, 31(3): 675-678, 683. doi: 10.3969/j.issn.1001-3695.2014.03.008

    [14]

    Gong J M, Ding Z, Li S P, et al. Research on broadband raman fiber amplifier based on particle swarm optimization[J]. Study on Optical Communications, 2018, 44(5): 46-51, 68. http://en.cnki.com.cn/Article_en/CJFDTotal-GTXY201805009.htm

  • 加载中

(8)

(1)

计量
  • 文章访问数:  4043
  • PDF下载数:  557
  • 施引文献:  0
出版历程
收稿日期:  2019-12-23
修回日期:  2020-03-02
刊出日期:  2020-11-15

目录

/

返回文章
返回