新月十字架纳米结构中多Fano共振的产生和高FOM共振

侯艺博,霍义萍,姜雪莹,等. 新月十字架纳米结构中多Fano共振的产生和高FOM共振[J]. 光电工程,2020,47(11):200010. doi: 10.12086/oee.2020.200010
引用本文: 侯艺博,霍义萍,姜雪莹,等. 新月十字架纳米结构中多Fano共振的产生和高FOM共振[J]. 光电工程,2020,47(11):200010. doi: 10.12086/oee.2020.200010
Hou Y B, Huo Y P, Jiang X Y, et al. Generation of multiple Fano resonance and high FOM resonance based on the crescent cross nanostructure[J]. Opto-Electron Eng, 2020, 47(11): 200010. doi: 10.12086/oee.2020.200010
Citation: Hou Y B, Huo Y P, Jiang X Y, et al. Generation of multiple Fano resonance and high FOM resonance based on the crescent cross nanostructure[J]. Opto-Electron Eng, 2020, 47(11): 200010. doi: 10.12086/oee.2020.200010

新月十字架纳米结构中多Fano共振的产生和高FOM共振

  • 基金项目:
    国家自然科学基金资助项目(11604198)
详细信息
    作者简介:
    通讯作者: 霍义萍(1977-),女,博士,副教授,主要从事表面等离激元光子学的研究。E-mail:yphuo@snnu.edu.cn
  • 中图分类号: TP212

Generation of multiple Fano resonance and high FOM resonance based on the crescent cross nanostructure

  • Fund Project: Supported by National Natural Foundation of China (11604198)
More Information
  • 金属表面等离激元具有许多新颖的光学特性和重要的应用,并且也是当今研究的热点。本文采用有限元方法研究了由新月和十字架组成的新月十字架纳米结构。通过改变结构参数来打破结构对称性,可以产生新的等离激元磁模式和多重Fano共振。同时,通过对称地改变两棒之间的夹角,FOM值可以达到61。我们的结构在多波长传感器、超灵敏生物传感器、表面增强光谱和慢光传输等领域有着重要的应用。

  • Overview: In recent years, great progress has been made in the research based on surface plasmons (SPs). SPs has been widely used in nano-optoelectronic integration, optical imaging, biosensor, data storage, and has attracted great attention of researchers. Fano resonance comes from the quantum system originally. When the discrete and the continuous energy level are superimposed, quantum interference occurs and low absorption happens at a specific optical frequency, which results in an asymmetric linetype. U Fano explained the mechanism of asymmetric linetype by using strict theory. In the SPs system, Fano resonance can be formed by the coupling between the bright mode (superradiant) and the dark mode (subradiant), which results in the asymmetric spectrum. Fano resonance is characterized by asymmetric linetype. A spectral dip is formed through coupling of bright mode and dark mode, where scattering is suppressed and absorption is enhanced. In order to explore the optical characteristics and application of surface plasmon resonance modes of composite metal nanostructures, a crescent cross (CC) nanostructure composed of a crescent and a cross is designed. A commercial software COMSOL Multiphysics based on the finite element method is used to calculate the optical response of the CC nanostructure. The direction of incident light is perpendicular to the surface of the nanostructure, and the polarization of light propagates parallel to the structure. By changing the structural parameters to break the symmetry of the nanostructure, rich optical properties can be obtained. The rotating cross can excite the surface plasmon resonance magnetic mode, and the electric mode and the magnetic mode are coupled to form the magnetic Fano resonance. The magnetic Fano resonance has advantages that the electrical Fano resonance does not have. A closed-loop current can be formed, which can limit the energy more locally, reduce the scattering loss and strengthen the response of the magnetic field. By rotating and shortening the single rod a2, the structural symmetry is broken to generate multiple Fano resonance effects. Meanwhile, the optical characteristics of the plasmon resonance mode on the surface of the nanostructure are tuned by changing the polarization direction of light (rotating the entire structure) without changing the basic structure, and it is found that new Fano resonances occur continuously during the rotation process, thus forming multiple Fano resonances. In order to explore the application potential of crescent cross nanostructure in sensing field, we calculated its sensitivity. By changing the angle between the two rods symmetrically, the figure of merit (FOM) can reach 61. Our structure has important applications in the fields of multi-wavelength sensor, ultra-sensitive biosensor, surface enhanced spectroscopy and slow light transmission.

  • 加载中
  • Figure 1.  (a) 2-D structure and geometric parameters of the CC nanostructure; (b) 3-D schematic diagram of the CC nanostructure; The rotation angles of the cross (c), rod a2 (d) and the whole structure (e) around O1 are θ, α and β degrees respectively

    图 2  (a) Extinction spectrum of the CC nanostructure; (b)~(e) The charge distributions; (f)~(i) The magnetic field enhancement and surface current density distributions of mode E′, E, m and M. Here, H represents the local magnetic field, and H0 represents the background magnetic field, where R=80 nm, R0=100 nm, L=60 nm, w=20 nm and T=20 nm

    图 3  (a) Extinction spectra of the CC nanostructure with rotating cross; (b) The charge distribution of the new mode D when θ=10°; (c) The magnetic field enhancement and surface current density distribution of the new mode D when θ=10°

    图 4  (a) Extinction spectra of the CC nanostructure with rotating rod a2; (b) The charge distribution of mode G when α=15°; (c) The magnetic field enhancement and current density distributions of mode G when α=15°

    图 5  (a) Extinction spectra of the CC nanostructure when bar a1 decreases; (b)~(d) The charge distributions of mode B, V', V when L=40 nm; (e)~(g) The magnetic field enhancement and surface current density distributions of modes B, V', V when L=40 nm

    图 6  (a) The extinction spectra of the CC nanostructure with rotating the whole structure from 0° to 90° with 15° intervals; (b)~(d) The charge distributions of mode Z', Z and H when β= 60°; (e)~(g) The magnetic field enhancement and surface current distributions of mode Z', Z and H when β = 60°

    图 7  Schematic diagram when the angle between the polarization direction of the electric field and the symmetry axis of the CC nanostructure β is (a) 0°; (b) 45° and (c) 90° respectively. Ex and Ey are the parallel component and the vertical component of symmetry axis, respectively

    图 8  (a) The extinction cross-section of the CC nanostructures varies with the refractive index of the surrounding environment. The angle between the two rods is 150°; (b) The FOM value of the structure changing with the angle between the two rods

  • [1]

    Zhang J X, Zhang L D. Nanostructures for surface plasmons[J]. Advances in Optics and Photonics, 2012, 4(2): 157-321. doi: 10.1364/AOP.4.000157

    [2]

    Gao W T, Chen C Y, Sun Z J. Local field enhancement and its wavelength tuning in metal nanoparticle arrays[J]. Japanese Journal of Applied Physics, 2019, 58(3): 030910. doi: 10.7567/1347-4065/aafb01

    [3]

    Garcia M A. Surface plasmons in metallic nanoparticles: fundamentals and applications[J]. Journal of Physics D: Applied Physics, 2011, 44(28): 283001. doi: 10.1088/0022-3727/44/28/283001

    [4]

    Lodewijks K, Ryken J, Van Roy W, et al. Tuning the fano resonance between localized and propagating surface plasmon resonances for refractive index sensing applications[J]. Plasmonics, 2013, 8(3): 1379-1385. doi: 10.1007/s11468-013-9549-3

    [5]

    Newman D M, Wears M L, Matelon R J, et al. Magneto-optic behaviour in the presence of surface plasmons[J]. Journal of Physics Condensed Matter, 2008, 20(34): 345230. doi: 10.1088/0953-8984/20/34/345230

    [6]

    Liu L, Han Z H, He S L. Novel surface plasmon waveguide for high integration[J]. Optics Express, 2005, 13(17): 6645-6650. doi: 10.1364/OPEX.13.006645

    [7]

    Dong J, Qu S X, Zheng H R, et al. Simultaneous SEF and SERRS from silver fractal-like nanostructure[J]. Sensors and Actuators B: Chemical, 2014, 191: 595-599. doi: 10.1016/j.snb.2013.09.088

    [8]

    Ooi C H R, Tan K S. Controlling double quantum coherence and electromagnetic induced transparency with plasmonic metallic nanoparticle[J]. Plasmonics, 2013, 8(2): 891-898. doi: 10.1007/s11468-013-9487-0

    [9]

    Luk'Yanchuk B, Zheludev N I, Maier S A, et al. The fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials, 2010, 9(9): 707-715. doi: 10.1038/nmat2810

    [10]

    Kobayashi K, Aikawa H, Sano A, et al. Fano resonance in a quantum wire with a side-coupled quantum dot[J]. Physical Review B, 2004, 70(3): 035319. doi: 10.1103/PhysRevB.70.035319

    [11]

    de Guevara M L L, Claro F, Orellana P A. Ghost fano resonance in a double quantum dot molecule attached to leads[J]. Physical Review B, 2003, 67(19): 195335. doi: 10.1103/PhysRevB.67.195335

    [12]

    Hajebifard A, Berini P. Fano resonances in plasmonic heptamer nano-hole arrays[J]. Optics Express, 2017, 25(16): 18566-18580. doi: 10.1364/OE.25.018566

    [13]

    Fang Z Y, Liu Z, Wang Y M, et al. Graphene-antenna sandwich photodetector[J]. Nano Letters, 2012, 12(7): 3808-3813. doi: 10.1021/nl301774e

    [14]

    Fang Z Y, Cai J Y, Yan Z B, et al. Removing a wedge from a metallic nanodisk reveals a fano resonance[J]. Nano Letters, 2011, 11(10): 4475-4479. doi: 10.1021/nl202804y

    [15]

    Frimmer M, Coenen T, Koenderink A F. Signature of a fano resonance in a plasmonic metamolecule's local density of optical states[J]. Physical Review Letters, 2012, 108(7): 077404. doi: 10.1103/PhysRevLett.108.077404

    [16]

    Chen S, Meng L Y, Hu J W, et al. Fano interference between higher localized and propagating surface plasmon modes in nanovoid arrays[J]. Plasmonics, 2015, 10(1): 71-76. doi: 10.1007/s11468-014-9779-z

    [17]

    Li J, Zhang Y, Jia T Q, et al. High tunability multipolar fano resonances in dual-ring/disk cavities[J]. Plasmonics, 2014, 9(6): 1251-1256. doi: 10.1007/s11468-014-9738-8

    [18]

    Kuznetsov M, Haus H. Radiation loss in dielectric waveguide structures by the volume current method[J]. IEEE Journal of Quantum Electronics, 1983, 19(10): 1505-1514. doi: 10.1109/JQE.1983.1071758

    [19]

    Huo Y Y, Jia T Q, Zhang Y, et al. Spaser based on fano resonance in a rod and concentric square ring-disk nanostructure[J]. Applied Physics Letters, 2014, 104(11): 113104. doi: 10.1063/1.4868867

    [20]

    Zhao Q, Yang Z J, He J. Fano resonances in heterogeneous dimers of silicon and gold nanospheres[J]. Frontiers of Physics, 2018, 13(3): 137801. doi: 10.1007/s11467-018-0746-6

    [21]

    Lee K L, Wu S H, Lee C W, et al. Sensitive biosensors using fano resonance in single gold nanoslit with periodic grooves[J]. Optics Express, 2011, 19(24): 24530-24539. doi: 10.1364/OE.19.024530

    [22]

    Lee E, Zhou K, Gwon M, et al. Surface plasmon-induced absorption enhancement of silicon nanowire array[J]. Proceedings of SPIE, 2012, 8457: 84572C. doi: 10.1117/12.929302

    [23]

    Tasolamprou A C, Zografopoulos D C, Kriezis E E. Liquid crystal-based dielectric loaded surface plasmon polariton optical switches[J]. Journal of Applied Physics, 2011, 110(9): 093102. doi: 10.1063/1.3658247

    [24]

    Gong X, Tong M H, Xia Y J, et al. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009, 325(5948): 1665-1667. doi: 10.1126/science.1176706

    [25]

    Berini P. Surface plasmon photodetectors and their applications[J]. Laser & Photonics Reviews, 2014, 8(2): 197-220. http://onlinelibrary.wiley.com/doi/10.1002/lpor.201300019/abstract

    [26]

    Bao Y J, Hu Z J, Li Z W, et al. Magnetic plasmonic fano resonance at optical frequency[J]. Small, 2015, 11(18): 2177-2181. doi: 10.1002/smll.201402989

    [27]

    Bao Y J, Zu S, Zhang Y F, et al. Active control of graphene-based unidirectional surface plasmon launcher[J]. ACS Photonics, 2015, 2(8): 1135-1140. doi: 10.1021/acsphotonics.5b00182

    [28]

    Bao Y J, Zhu X, Fang Z Y. Plasmonic toroidal dipolar response under radially polarized excitation[J]. Scientific Reports, 2015, 5: 11793. doi: 10.1038/srep11793

    [29]

    Zhang Q, Wen X L, Li G Y, et al. Multiple magnetic mode-based fano resonance in split-ring resonator/disk nanocavities[J]. ACS Nano, 2013, 7(12): 11071-11078. doi: 10.1021/nn4047716

    [30]

    Yang L, Wang J C, Yang L Z, et al. Characteristics of multiple fano resonances in waveguide-coupled surface plasmon resonance sensors based on waveguide theory[J]. Scientific Reports, 2018, 8(1): 2560. doi: 10.1038/s41598-018-20952-7

    [31]

    Kong Y, Cao J J, Qian W C, et al. Multiple fano resonance based optical refractive index sensor composed of micro-cavity and micro-structure[J]. IEEE Photonics Journal, 2018, 10(6): 6804410. http://www.zhangqiaokeyan.com/academic-journal-foreign_other_thesis/0204112541961.html

    [32]

    Li C, Li S L, Wang Y L, et al. Multiple fano resonances based on plasmonic resonator system with end-coupled cavities for high-performance nanosensor[J]. IEEE Photonics Journal, 2017, 9(6): 4801509. http://ieeexplore.ieee.org/document/8074729/

    [33]

    Zhang Y Y, Li S L, Zhang X Y, et al. Evolution of fano resonance based on symmetric/asymmetric plasmonic waveguide system and its application in nanosensor[J]. Optics Communications, 2016, 370: 203-208. doi: 10.1016/j.optcom.2016.03.001

    [34]

    Yun B F, Hu G H, Cong J W, et al. Fano resonances induced by strong interactions between dipole and multipole plasmons in t-shaped nanorod dimer[J]. Plasmonics, 2014, 9(3): 691-698. doi: 10.1007/s11468-014-9688-1

    [35]

    Wang J Q, Fan C Z, He J N, et al. Double fano resonances due to interplay of electric and magnetic plasmon modes in planar plasmonic structure with high sensing sensitivity[J]. Optics Express, 2013, 21(2): 2236-2244. doi: 10.1364/OE.21.002236

    [36]

    Gonçalves M R, Melikyan A, Minassian H, et al. Strong dipole-quadrupole coupling and fano resonance in h-like metallic nanostructures[J]. Optics Express, 2014, 22(20): 24516-24529. doi: 10.1364/OE.22.024516

  • 加载中

(8)

计量
  • 文章访问数:  3595
  • PDF下载数:  497
  • 施引文献:  0
出版历程
收稿日期:  2020-01-06
修回日期:  2020-03-31
刊出日期:  2020-11-15

目录

/

返回文章
返回